Skip to main content

A Comparative Analysis of Cellular Morphological Differentiation Within the Cerebral Cortex Using Diffusion Tensor Imaging

  • Protocol
  • First Online:
Animal Models of Behavioral Analysis

Part of the book series: Neuromethods ((NM,volume 50))

Abstract

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that provides information about cellular microstructure through measurements of water diffusion. Because inferences about neuroanatomy can be made from DTI, this methodology has been used to characterize cellular morphological changes associated with development of the cerebral cortex. Currently, however, the specific anatomical changes associated with DTI measurements directed at the cerebral cortex are incompletely characterized. Here, data collected in several laboratories, investigating five species (mouse, rat, ferret, baboon, and human), are compared to determine whether similarities in the trajectory of DTI measurements with development exist in the literature. Specifically, rates of change in fractional anisotropy (FA) of water diffusion were compared to rates of neuroanatomical development (based on the occurrence of specific neural events) in each species. In all species, decreases in FA with development were accurately approximated by fitting data to the same mathematical expression of exponential decay. Additionally, a high degree of correlation was found between rates of FA decay and rates of neuroanatomical development. This suggests that a common mechanism underlies decreases in FA with development across species. These results have two major implications. The ability of DTI to detect changes in neuroanatomy in the normal developing cerebral cortex introduces the potential for the use of this methodology in detecting cortical abnormalities associated with various developmental disorders. Additionally, the comparable patterns of neurodevelopment, and hence FA, across species imply that DTI methodology applied in non-human species can provide information about the human condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    Article  PubMed  Google Scholar 

  2. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539

    Article  PubMed  CAS  Google Scholar 

  3. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  4. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346

    Article  PubMed  CAS  Google Scholar 

  5. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Mag Reson Ser B 111:209–219

    Article  CAS  Google Scholar 

  6. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  PubMed  CAS  Google Scholar 

  7. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  PubMed  CAS  Google Scholar 

  8. Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    Article  PubMed  CAS  Google Scholar 

  9. Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Charles C. Thomas, Springfield, IL, pp 3–145

    Google Scholar 

  10. McKinstry RC, Mathur A, Miller JP, Ozcan AO, Snyder AZ, Schefft GL, Almli CR, Shiran SI, Conturo TE, Neil JJ (2002) Radial organization of developing human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12:1237–1243

    Article  PubMed  Google Scholar 

  11. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aaronovitz JA, Miller JP, Lee BCP, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured using diffusion tensor imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  12. Baratti C, Barnett A, Pierpaoli C (1997) Comparative MRI study of brain maturation using T1, T2, and the diffusion tensor. Proceedings of the ISMRM, Vancouver, CA

    Google Scholar 

  13. Thornton JS, Ordidge RJ, Penrice J, Cady EB, Amess PN, Punwani S, Clemence M, Wyatt JS (1997) Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia–ischaemia. Magn Reson Imaging 15:433–440

    Article  PubMed  CAS  Google Scholar 

  14. Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJ, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5:79–94

    PubMed  Google Scholar 

  15. Darlington RB, Dunlop SA, Finlay BL (1999) Neural development in metatherian and eutherian mammals: variation and constraint. J Comp Neurol 411:359–368

    Article  PubMed  CAS  Google Scholar 

  16. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  PubMed  CAS  Google Scholar 

  17. Juraska JM, Fifkova E (1979) A Golgi study of the early postnatal development of the visual cortex of the hooded rat. J Comp Neurol 183:247–256

    Article  PubMed  CAS  Google Scholar 

  18. Conel JL (1939) The postnatal development of the human cerebral cortex, vol 1. Harvard University Press, Cambridge, MA

    Google Scholar 

  19. Mori S, Itoh R, Zhang J, Kaufmann WE, van Zijl PC, Solaiyappan M, Yarowsky P (2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson Med 46:18–23

    Article  PubMed  CAS  Google Scholar 

  20. McNab JA, Jbabdi S, Deoni SC, Douaud G, Behrens TE, Miller KL (2009) High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession. Neuroimage 46:775–785

    Article  PubMed  Google Scholar 

  21. Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227

    Article  PubMed  Google Scholar 

  22. Granger B, Tekaia F, Le Sourd AM, Rakic P, Bourgeois JP (1995) Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: comparison with the neocortex. J Comp Neurol 360:363–376

    Article  PubMed  CAS  Google Scholar 

  23. Miller MW, Potempa G (1990) Numbers of neurons and glia in mature rat somatosensory cortex: effects of prenatal exposure to ethanol. J Comp Neurol 293:92–102

    Article  PubMed  CAS  Google Scholar 

  24. Bayer SA, Altman J (1991) Neocortical development. Raven Press, New York, NY

    Google Scholar 

  25. Caviness VS Jr, Goto T, Tarui T, Takahashi T, Bhide PG, Nowakowski RS (2003) Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb Cortex 13:592–598

    Article  PubMed  Google Scholar 

  26. Kroenke CD, Bretthorst GL, Inder TE, Neil JJ (2005) Diffusion MR imaging characteristics of the developing primate brain. Neuroimage 25:1205–1213

    Article  PubMed  Google Scholar 

  27. Kroenke CD, Van Essen DC, Inder TE, Rees S, Bretthorst GL, Neil JJ (2007) Microstructural changes of the baboon cerebral cortex during gestational development reflected in magnetic resonance imaging diffusion anisotropy. J Neurosci 27:12506–12515

    Article  PubMed  CAS  Google Scholar 

  28. Huang H, Yamamoto A, Hossain MA, Younes L, Mori S (2008) Quantitative cortical mapping of fractional anisotropy in developing rat brains. J Neurosci 28:1427–1433

    Article  PubMed  CAS  Google Scholar 

  29. Sizonenko SV, Camm EJ, Garbow JR, Maier SE, Inder TE, Williams CE, Neil JJ, Huppi PS (2007) Developmental changes and injury induced disruption of the radial organization of the cortex in the immature rat brain revealed by in vivo diffusion tensor MRI. Cereb Cortex 17:2609–2617

    Article  PubMed  Google Scholar 

  30. Smart IHM (1983) Three dimensional growth of the mouse isocortex. J Anat 137:683–694

    PubMed  Google Scholar 

  31. McSherry GM (1984) Mapping of cortical histogenesis in the ferret. J Embryol Exp Morphol 81:239–252

    PubMed  CAS  Google Scholar 

  32. McSherry GM, Smart IH (1986) Cell production gradients in the developing ferret isocortex. J Anat 144:1–14

    PubMed  CAS  Google Scholar 

  33. Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152:109–126

    Article  CAS  Google Scholar 

  34. Kroenke CD, Taber EN, Leigland LA, Knutsen AK, Bayly PV (2009) Regional patterns of cerebral cortical differentiation determined by diffusion tensor MRI. Cereb Cortex 19:2916–2929

    Article  PubMed  Google Scholar 

  35. Jackson CA, Peduzzi JD, Hickey TL (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J Neurosci 9:1242–1253

    PubMed  CAS  Google Scholar 

  36. Noctor SC, Scholnicoff NJ, Juliano SL (1997) Histogenesis of ferret somatosensory cortex. J Comp Neurol 387:179–193

    Article  PubMed  CAS  Google Scholar 

  37. Deipolyi AR, Mukherjee P, Gill K, Henry RG, Partridge SC, Veeraraghavan S, Jin H, Lu Y, Miller SP, Ferriero DM, Vigneron DB,, Barkovich AJ (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. NeuroImage 27:579–586

    Article  PubMed  Google Scholar 

  38. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991

    Article  PubMed  CAS  Google Scholar 

  39. Nitkin RM (2000) Dendritic mechanisms in brain function and developmental disabilities. Cereb Cortex 10(Issue 10):925–926

    Article  PubMed  CAS  Google Scholar 

  40. Hammer RP Jr (1986) Alcohol effects on developing neuronal structure. In: West JR (ed) Alcohol and brain development. Oxford, New York, NY, pp 184–203

    Google Scholar 

  41. Fabregues I, Ferrer I, Gairi JM, Cahuana A, Giner P (1985) Effects of prenatal exposure to ethanol on the maturation of the pyramidal neurons in the cerebral cortex of the guinea-pig: a quantitative Golgi study. Neuropathol Appl Neurobiol 11:291–298

    Article  PubMed  CAS  Google Scholar 

  42. Hammer RP Jr, Scheibel AB (1981) Morphologic evidence for a delay of neuronal maturation in fetal alcohol exposure. Exp Neurol 74:587–596

    Article  PubMed  CAS  Google Scholar 

  43. Granato A, Van Pelt J (2003) Effects of early ethanol exposure on dendrite growth of cortical pyramidal neurons: inferences from a computational model. Brain Res Dev Brain Res 142:223–227

    Article  PubMed  CAS  Google Scholar 

  44. Armstrong DD, Dunn K, Antalffy B (1998) Decreased dendritic branching in frontal, motor and limbic cortex in Rett syndrome compared with trisomy 21. J Neuropathol Exp Neurol 57:1013–1017

    Article  PubMed  CAS  Google Scholar 

  45. Kishi N, Macklis JD (2004) MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 27:306–321

    Article  PubMed  CAS  Google Scholar 

  46. Izbudak I, Farage L, Bonekamp D, Zhang W, Bibat G, Mori S, Naidu S, Horska A (2009) Diffusion tensor imaging findings in Rett syndrome patients. Proceedings of the 17th ISMRM Scientific Meeting, Honolulu, HI

    Google Scholar 

  47. Naidu S, Kaufmann WE, Abrams MT, Pearlson GD, Lanham DC, Fredericksen KA, Barker PB, Horska A, Golay X, Mori S, Wong DF, Yablonski M, Moser HW, Johnston MV (2001) Neuroimaging studies in Rett syndrome. Brain Dev 23(Suppl 1):S62–S71

    Article  PubMed  Google Scholar 

  48. Leuzzi V, Tosetti M, Montanaro D, Carducci C, Artiola C, Carducci C, Antonozzi I, Burroni M, Carnevale F, Chiarotti F, Popolizio T, Giannatempo GM, D’Alesio V, Scarabino T (2007) The pathogenesis of the white matter abnormalities in phenylketonuria: a multimodal 3.0 Tesla MRI and magnetic resonance spectroscopy (1H MRS) study. J Inherit Metab Dis 30:209–216

    Article  PubMed  CAS  Google Scholar 

  49. Lebel C, Rasmussen C, Wyper K, Walker L, Andrew G, Yager J, Beaulieu C (2008) Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res 32:1732–1740

    Article  PubMed  Google Scholar 

  50. Ma X, Coles CD, Lynch ME, Laconte SM, Zurkiya O, Wang D, Hu X (2005) Evaluation of corpus callosum anisotropy in young adults with fetal alcohol syndrome according to diffusion tensor imaging. Alcohol Clin Exp Res 29:1214–1222

    Article  PubMed  Google Scholar 

  51. Sowell ER, Johnson A, Kan E, Lu LH, Van Horn JD, Toga AW, O’Connor MJ, Bookheimer SY (2008) Mapping white matter integrity and neurobehavioral correlates in children with fetal alcohol spectrum disorders. J Neurosci 28:1313–1319

    Article  PubMed  CAS  Google Scholar 

  52. Wozniak JR, Mueller BA, Chang PN, Muetzel RL, Caros L, Lim KO (2006) Diffusion tensor imaging in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 30:1799–1806

    Article  PubMed  Google Scholar 

  53. Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA, Edwards AD, Counsell SJ (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 35:1021–1027

    Article  PubMed  Google Scholar 

  54. Counsell SJ, Edwards AD, Chew AT, Anjari M, Dyet LE, Srinivasan L, Boardman JP, Allsop JM, Hajnal JV, Rutherford MA, Cowan FM (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–3208

    Article  PubMed  Google Scholar 

  55. Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE (2007) Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage 34:61–73

    Article  PubMed  Google Scholar 

  56. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41:15–30

    Article  PubMed  Google Scholar 

  57. Kubicki M, Park H, Westin CF, Nestor PG, Mulkern RV, Maier SE, Niznikiewicz M, Connor EE, Levitt JJ, Frumin M, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2005) DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage 26:1109–1118

    Article  PubMed  CAS  Google Scholar 

  58. Kumra S, Ashtari M, Cervellione KL, Henderson I, Kester H, Roofeh D, Wu J, Clarke T, Thaden E, Kane JM, Rhinewine J, Lencz T, Diamond A, Ardekani BA, Szeszko PR (2005) White matter abnormalities in early-onset schizophrenia: a voxel-based diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 44:934–941

    Article  PubMed  Google Scholar 

  59. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31:361–370

    Article  PubMed  CAS  Google Scholar 

  60. Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6:955–965

    Article  PubMed  CAS  Google Scholar 

  61. Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3:34–42

    Article  PubMed  CAS  Google Scholar 

  62. Hubel DH (1982) Exploration of the primary visual cortex, 1955–78. Nature 299:515–524

    Article  PubMed  CAS  Google Scholar 

  63. Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299:583–591

    Article  PubMed  CAS  Google Scholar 

  64. D’Arceuil H, de Crespigny A (2007) The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 36:64–68

    Article  PubMed  Google Scholar 

  65. D’Arceuil HE, Westmoreland S, de Crespigny AJ (2007) An approach to high resolution diffusion tensor imaging in fixed primate brain. Neuroimage 35:553–565

    Article  PubMed  Google Scholar 

  66. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, Smith GN, Arango V, Mann JJ, Dwork AJ, Falkai P, Honer WG (2003) Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8:811–820

    Article  PubMed  CAS  Google Scholar 

  67. Guilfoyle DN, Helpern JA, Lim KO (2003) Diffusion tensor imaging in fixed brain tissue at 7.0 T. NMR Biomed 16:77–81

    Article  PubMed  Google Scholar 

  68. Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P, Miller MI, Mori S (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273

    Article  PubMed  CAS  Google Scholar 

  69. Pfefferbaum A, Sullivan EV, Adalsteinsson E, Garrick T, Harper C (2004) Postmortem MR imaging of formalin-fixed human brain. Neuroimage 21:1585–1595

    Article  PubMed  Google Scholar 

  70. Sun SW, Neil JJ, Liang HF, He YY, Schmidt RE, Hsu CY, Song SK (2005) Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infarcted brain. Magn Reson Med 53:1447–1451

    Article  PubMed  Google Scholar 

  71. Sun SW, Neil JJ, Song SK (2003) Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains. Magn Reson Med 50:743–748

    Article  PubMed  Google Scholar 

  72. Shepherd TM, Flint JJ, Thelwall PE, Stanisz GJ, Mareci TH, Yachnis AT, Blackband SJ (2009) Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue – implications for MRI studies of human autopsy samples. NeuroImage 44:820–826

    Article  PubMed  Google Scholar 

  73. Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62:26–34

    Article  PubMed  Google Scholar 

  74. Thelwall PE, Shepherd TM, Stanisz GJ, Blackband SJ (2006) Effects of temperature and aldehyde fixation on tissue water diffusion properties, studied in an erythrocyte ghost tissue model. Magn Reson Med 56:282–289

    Article  PubMed  Google Scholar 

  75. Bockhorst KH, Narayana PA, Liu R, Ahobila-Vijjula P, Ramu J, Kamel M, Wosik J, Bockhorst T, Hahn K, Hasan KM, Perez-Polo JR (2008) Early postnatal development of rat brain: in vivo diffusion tensor imaging. J Neurosci Res 86:1520–1528

    Article  PubMed  CAS  Google Scholar 

  76. Gupta RK, Hasan KM, Trivedi R, Pradhan M, Das V, Parikh NA, Narayana PA (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178

    Article  PubMed  CAS  Google Scholar 

  77. Trivedi R, Gupta RK, Husain N, Rathore RK, Saksena S, Srivastava S, Malik GK, Das V, Pradhan M, Sarma MK, Pandey CM, Narayana PA (2009) Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology. Neuroradiology 51:567–576

    Article  PubMed  Google Scholar 

  78. Hofman MA (1988) Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain Behav Evol 32:17–26

    Article  PubMed  CAS  Google Scholar 

  79. Hofman MA (1985) Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav Evol 27:28–40

    Article  PubMed  CAS  Google Scholar 

  80. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155

    Article  PubMed  CAS  Google Scholar 

  81. Frank LR (2001) Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45:935–939

    Article  PubMed  CAS  Google Scholar 

  82. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582

    Article  PubMed  Google Scholar 

  83. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  84. Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372

    Article  PubMed  Google Scholar 

  85. Kroenke CD, Bretthorst GL, Inder TE, Neil JJ (2006) Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory. Magn Reson Med 55:187–197

    Article  PubMed  Google Scholar 

  86. Van Essen DC, Dickson J, Harwell J, Hanlon D, Anderson CH, Drury HA (2001) An integrated software system for surface-based analysis of cerebral cortex. J Am Med Inf Assoc 41:1359–1378

    Google Scholar 

  87. Kingsley PB (2005) Introduction to diffusion tensor imaging mathematics: part II. anisotropy, diffusion-weighting factors, and gradient echo schemes. Concepts Magn Reson Part A 28A:123–154

    Google Scholar 

  88. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  89. Larvaron P, Boespflug-Tanguy O, Renou JP, Bonny JM (2007) In vivo analysis of the post-natal development of normal mouse brain by DTI. NMR Biomed 20:413–421

    Article  PubMed  Google Scholar 

  90. Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimag Clin N Am 16:19–43

    Article  Google Scholar 

  91. Dieni S, Inder T, Yoder B, Briscoe T, Camm E, Egan G, Denton D, Rees S (2004) The pattern of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Neuropathol Exp Neurol 63:1297–1309

    PubMed  Google Scholar 

  92. Baloch S, Verma R, Huang H, Khurd P, Clark S, Yarowsky P, Abel T, Mori S, Davatzikos C (2009) Quantification of brain maturation and growth patterns in C57BL/6 J mice via computational neuroanatomy of diffusion tensor images. Cereb Cortex 19:675–687

    Article  PubMed  Google Scholar 

  93. Barnette AR, Neil JJ, Kroenke CD, Griffith JL, Epstein AA, Bayly PV, Knutsen AK, Inder TE (2009) Characterization of brain development in the ferret via MRI. Pediatr Res 66:80–84

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant T32 AA007468-22 and the OHSU 11.7 T MRI system is supported by the Keck Foundation. The authors would like to thank Jaime F. Olavarria for helpful discussion during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Leigland, L.A., Kroenke, C.D. (2011). A Comparative Analysis of Cellular Morphological Differentiation Within the Cerebral Cortex Using Diffusion Tensor Imaging. In: Raber, J. (eds) Animal Models of Behavioral Analysis. Neuromethods, vol 50. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-883-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-883-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-882-9

  • Online ISBN: 978-1-60761-883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics