Skip to main content

Behavioral Sensitization to Addictive Drugs: Clinical Relevance and Methodological Aspects

  • Protocol
  • First Online:
Animal Models of Behavioral Analysis

Part of the book series: Neuromethods ((NM,volume 50))

Abstract

Sensitization to the locomotor stimulant effects of abused drugs provides a behavioral measure thought to reflect underlying neural adaptations to repeated drug exposure. Neurochemical measures have provided information about the specific neural systems impacted and altered by repeated drug exposure. In pre-clinical studies, sensitized animals exhibit facilitated acquisition of drug self-administration and preference for cues associated with past drug experiences. This has suggested a role for sensitization in the development of drug abuse and in relapse. In humans, self-reports of sensitized vigor and energy levels have been described that may relate to the more direct measurements of locomotor sensitization in animals. Described in this chapter are methods used to measure psychomotor sensitization in mice, which are partially dependent upon the drug under investigation. The advantages to the use of mice in pre-clinical research are (1) that they readily sensitize to all drugs of abuse, (2) many methods have been developed for studying other aspects of their behavior that may be related to sensitization, and (3) they are an excellent species for genetic investigations aimed at determining susceptibility to behavioral sensitization and thus neuroadaptations related to drug abuse. Factors to consider when designing a study of drug-induced psychomotor sensitization include dose, number of treatments, frequency or interval between treatments and challenge, and duration of testing. First, a measure of baseline level of activity should be obtained, followed by measurement of the initial drug effect, measures of the change in initial effect with repeated administration, and a subsequent measure of baseline to see how it may have changed after repeated drug testing. Depending upon the goal of the research, a drug withdrawal period may be desirable, followed by another drug challenge to determine whether sensitization is still present. Such a withdrawal or “incubation” period has been instated to allow for the establishment of long-term central nervous system changes that may accompany sensitization in studies of mechanism. The recommended frequency of dosing is dependent upon characteristics of the drug, particularly its clearance rate. More intermittent schedules of administration are particularly important for inducing robust sensitization to classical psychostimulant drugs like cocaine and methamphetamine. The recommended duration of testing is influenced by the duration of drug effect, but data should be collected in isolated time units so that the time response curve can be examined. Finally, associative conditioning and stress-related factors can have large impacts on sensitization and should be carefully considered in all aspects of the research design, including whether drug treatment is linked to the test environment or not, density of housing, and specifics of handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA (2010) Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35:401–415

    PubMed  CAS  Google Scholar 

  2. Phillips TJ, Dickinson S, Burkhart-Kasch S (1994) Behavioral sensitization to drug stimulant effects in C57BL/6 J and DBA/2 J inbred mice. Behav Neurosci 108:789–803

    PubMed  CAS  Google Scholar 

  3. Phillips TJ, Huson M, Gwiazdon C, Burkhart-Kasch S, Shen EH (1995) Effects of acute and repeated ethanol exposures on the locomotor activity of BXD recombinant inbred mice. Alcohol Clin Exp Res19:269–278

    PubMed  CAS  Google Scholar 

  4. Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    PubMed  CAS  Google Scholar 

  5. Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103:480–492

    PubMed  CAS  Google Scholar 

  6. Blum K, Chen TJ, Downs BW, Bowirrat A, Waite RL, Braverman ER, Madigan M, Oscar-Berman M, DiNubile N, Stice E, Giordano J, Morse S, Gold M (2009) Neurogenetics of dopaminergic receptor supersensitivity in activation of brain reward circuitry and relapse: proposing “deprivation-amplification relapse therapy” (DART). Postgrad Med 121:176–196

    PubMed  Google Scholar 

  7. Chen JC, Chen PC, Chiang YC (2009) Molecular mechanisms of psychostimulant addiction. Chang Gung Med J 32:148–154

    PubMed  Google Scholar 

  8. De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJ (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10:3565–3571

    PubMed  Google Scholar 

  9. De Vries TJ, Schoffelmeer AN, Binnekade R, Raasø H, Vanderschuren LJ (2002) Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 26:18–26

    PubMed  Google Scholar 

  10. Kalivas PW, Pierce RC, Cornish J, Sorg BA (1998) A role for sensitization in craving and relapse in cocaine addiction. J Psychopharmacol 12:49–53

    PubMed  CAS  Google Scholar 

  11. Niwa M, Yan Y, Nabeshima T (2008) Genes and molecules that can potentiate or attenuate psychostimulant dependence: relevance of data from animal models to human addiction. Ann NY Acad Sci 1141:76–95

    PubMed  CAS  Google Scholar 

  12. Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154:327–342

    PubMed  CAS  Google Scholar 

  13. Kandel ER (2000) Cellular mechanisms of learning and the biological basis of individuality. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, San Francisco, CA, pp 1247–1279

    Google Scholar 

  14. Kandel ER, Schwartz JH (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433–443

    PubMed  CAS  Google Scholar 

  15. Pinsker HM, Hening WA, Carew TJ, Kandel ER (1973) Long-term sensitization of a defensive withdrawal reflex in Aplysia. Science 182:1039–1042

    PubMed  CAS  Google Scholar 

  16. Bailey CH, Chen M (1983) Morphological basis of long-term habituation and sensitization in Aplysia. Science 220:91–93

    PubMed  CAS  Google Scholar 

  17. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  18. Kandel ER, Spencer WA (1968) Cellular neurophysiological approaches in the study of learning. Physiol Rev 48:65–134

    PubMed  CAS  Google Scholar 

  19. Feltenstein MW, See RE (2007) NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol Learn Mem 88:435–444

    PubMed  CAS  Google Scholar 

  20. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    PubMed  CAS  Google Scholar 

  21. Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    PubMed  CAS  Google Scholar 

  22. Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann NY Acad Sci 1141:1–21

    PubMed  CAS  Google Scholar 

  23. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56:73–82

    PubMed  CAS  Google Scholar 

  24. von der Goltz C, Vengeliene V, Bilbao A, Perreau-Lenz S, Pawlak CR, Kiefer F, Spanagel R (2009) Cue-induced alcohol-seeking behaviour is reduced by disrupting the reconsolidation of alcohol-related memories. Psychopharmacology (Berl) 205:389–397

    Google Scholar 

  25. Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci 45:599–606

    PubMed  CAS  Google Scholar 

  26. Davis S, Butcher SP, Morris RG (1992) The NMDA receptor antagonist d-2-amino-5-phosphonopentanoate (d-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci 12:21–34

    PubMed  CAS  Google Scholar 

  27. Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    PubMed  CAS  Google Scholar 

  28. Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720

    PubMed  CAS  Google Scholar 

  29. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psych Rev 94:469–492

    CAS  Google Scholar 

  30. Post RM, Rose H (1976) Increasing effects of repetitive cocaine administration in the rat. Nature 260:731–732

    PubMed  CAS  Google Scholar 

  31. Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav 2:249–255

    PubMed  CAS  Google Scholar 

  32. Boutrel B, de Lecea L (2008) Addiction and arousal: the hypocretin connection. Physiol Behav 93:947–951

    PubMed  CAS  Google Scholar 

  33. Haile CN, Hiroi N, Nestler EJ, Kosten TA (2001) Differential behavioral responses to cocaine are associated with dynamics of mesolimbic dopamine proteins in Lewis and Fischer 344 rats. Synapse 41:179–190

    PubMed  CAS  Google Scholar 

  34. Phillips TJ (1997) Behavior genetics of drug sensitization. Crit Rev Neurobiol 11:21–33

    PubMed  CAS  Google Scholar 

  35. Segal DS, Weinberger SB, Cahill J, McCunney SJ (1980) Multiple daily amphetamine administration: behavioral and neurochemical alterations. Science 207:904–907

    PubMed  CAS  Google Scholar 

  36. Yang PB, Swann AC, Dafny N (2006) Chronic methylphenidate modulates locomotor activity and sensory evoked responses in the VTA and NAc of freely behaving rats. Neuropharmacology 51:546–556

    PubMed  CAS  Google Scholar 

  37. Wills TA, Knapp DJ, Overstreet DH, Breese GR (2009) Sensitization, duration, and pharmacological blockade of anxiety-like behavior following repeated ethanol withdrawal in adolescent and adult rats. Alcohol Clin Exp Res 33:455–463

    PubMed  Google Scholar 

  38. Pastor R, McKinnon CS, Scibelli AC, Burkhart-Kasch S, Reed C, Ryabinin AE, Coste SC, Stenzel-Poore MP, Phillips TJ (2008) Corticotropin-releasing factor 1 receptor involvement in behavioral neuroadaptation to ethanol: a urocortin1-independent mechanism. Proc Natl Acad Sci USA 105:9070–9075

    PubMed  CAS  Google Scholar 

  39. Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    PubMed  CAS  Google Scholar 

  40. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    PubMed  CAS  Google Scholar 

  41. Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4:289–312

    PubMed  CAS  Google Scholar 

  42. Boehm SL II, Goldfarb KJ, Serio KM, Moore EM, Linsenbardt DN (2008) Does context influence the duration of locomotor sensitization to ethanol in female DBA/2 J mice? Psychopharmacology 197:191–201

    PubMed  CAS  Google Scholar 

  43. Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    PubMed  CAS  Google Scholar 

  44. Lessov CN, Phillips TJ (1998) Duration of sensitization to the locomotor stimulant effects of ethanol in mice. Psychopharmacology (Berl) 135:374–382

    CAS  Google Scholar 

  45. Paulson PE, Robinson TE (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19:56–65

    PubMed  CAS  Google Scholar 

  46. Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl) 103:480–492

    CAS  Google Scholar 

  47. Brodkin ES, Kosten TA, Haile CN, Heninger GR, Carlezon WA Jr, Jatlow P, Remmers EF, Wilder RL, Nestler EJ (1999) Dark Agouti and Fischer 344 rats: differential behavioral responses to morphine and biochemical differences in the ventral tegmental area. Neuroscience 88:1307–1315

    PubMed  CAS  Google Scholar 

  48. Correa M, Sanchis-Segura C, Pastor R, Aragon CM (2004) Ethanol intake and motor sensitization: the role of brain catalase activity in mice with different genotypes. Physiol Behav 82:231–240

    PubMed  CAS  Google Scholar 

  49. Orsini C, Bonito-Oliva A, Conversi D, Cabib S (2005) Susceptibility to conditioned place preference induced by addictive drugs in mice of the C57BL/6 and DBA/2 inbred strains. Psychopharmacology (Berl) 181:327–336

    CAS  Google Scholar 

  50. Phillips TJ, Roberts AJ, Lessov CN (1997) Behavioral sensitization to ethanol: genetics and the effects of stress. Pharmacol Biochem Behav 57:487–493

    PubMed  CAS  Google Scholar 

  51. Phillips TJ, Huson MG, McKinnon CS (1998) Localization of genes mediating acute and sensitized locomotor responses to cocaine in BXD/Ty recombinant inbred mice. J Neurosci 18:3023–3034

    PubMed  CAS  Google Scholar 

  52. Szumlinski KK, Lominac KD, Frys KA, Middaugh LD (2005) Genetic variation in heroin-induced changes in behaviour: effects of B6 strain dose on conditioned reward and locomotor sensitization in 129-B6 hybrid mice. Genes Brain Behav 4:324–336

    PubMed  CAS  Google Scholar 

  53. Tolliver BK, Belknap JK, Woods WE, Carney JM (1994) Genetic analysis of sensitization and tolerance to cocaine. J Pharmacol Exp Ther 270:1230–1238

    PubMed  CAS  Google Scholar 

  54. Yang PB, Amini B, Swann AC, Dafny N (2003) Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res 971:139–152

    PubMed  CAS  Google Scholar 

  55. Balda MA, Anderson KL, Itzhak Y (2009) Development and persistence of long-lasting behavioral sensitization to cocaine in female mice: role of the nNOS gene. Neuropharmacology 56:709–715

    PubMed  CAS  Google Scholar 

  56. Morice E, Denis C, Giros B, Nosten-Bertrand M (2010) Evidence of long-term expression of behavioral sensitization to both cocaine and ethanol in dopamine transporter knockout mice. Psychopharmacology 208:57–66

    PubMed  CAS  Google Scholar 

  57. Phillips TJ, Kamens HM, Wheeler JM (2008) Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 32:707–759

    PubMed  CAS  Google Scholar 

  58. Schmidt LS, Miller AD, Lester DB, Bay-Richter C, Schülein C, Frikke-Schmidt H, Wess J, Blaha CD, Woldbye DP, Fink-Jensen A, Wortwein G (2010) Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M(5) muscarinic receptor knockout mice. Psychopharmacology (Berl) 207:547–558

    Google Scholar 

  59. Sharpe AL, Low MJ (2009) Proopiomelanocortin peptides are not essential for development of ethanol-induced behavioral sensitization. Alcohol Clin Exp Res 33:1202–1207

    PubMed  CAS  Google Scholar 

  60. de Jong IE, Steenbergen PJ, de Kloet ER (2009) Behavioral sensitization to cocaine: cooperation between glucocorticoids and epinephrine. Psychopharmacology 204:693–703

    PubMed  Google Scholar 

  61. Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16:387–394

    PubMed  Google Scholar 

  62. Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207:329–331

    PubMed  CAS  Google Scholar 

  63. Diaz-Otanez CS, Capriles ND, Cancela LM (1997) D1 and D2 dopamine and opiate receptors are involved in the restraint-stress induced sensitization to the psychostimulant effects of amphetamine. Pharmacol Biochem Behav 58:9–14

    PubMed  CAS  Google Scholar 

  64. Goeders NE (2002) Stress and cocaine addiction. J Pharmacol Exp Ther 301:785–789

    PubMed  CAS  Google Scholar 

  65. Lepsch LB, Gonzalo LA, Magro FJ, Delucia R, Scavone C, Planeta CS (2005) Exposure to chronic stress increases the locomotor response to cocaine and the basal levels of corticosterone in adolescent rats. Addict Biol 10:251–256

    PubMed  CAS  Google Scholar 

  66. Roberts AJ, Lessov CN, Phillips TJ (1995) Critical role for glucocorticoid receptors in stress- and ethanol-induced locomotor sensitization. J Pharmacol Exp Ther 275:790–797

    PubMed  CAS  Google Scholar 

  67. Davidson C, Lee TH, Ellinwood EH (2005) Acute and chronic continuous methamphetamine have different long-term behavioral and neurochemical consequences. Neurochem Int 46:189–203

    PubMed  CAS  Google Scholar 

  68. Chefer VI, Shippenberg TS (2002) Changes in basal and cocaine-evoked extracellular dopamine uptake and release in the rat nucleus accumbens during early abstinence from cocaine: quantitative determination under transient conditions. Neuroscience 112:907–919

    PubMed  CAS  Google Scholar 

  69. Ding ZM, Rodd ZA, Engleman EA, McBride WJ (2009) Sensitization of ventral tegmental area dopamine neurons to the stimulating effects of ethanol. Alcohol Clin Exp Res 33:1571–1581

    PubMed  CAS  Google Scholar 

  70. Domino EF, Tsukada H (2009) Nicotine sensitization of monkey striatal dopamine release. Eur J Pharmacol 607:91–95

    PubMed  CAS  Google Scholar 

  71. Janowsky AJ, Mah C, Johnson RA, Cunningham CL, Phillips TJ, Crabbe JC, Eshleman AJ, Belknap JK (2001) Mapping genes that regulate density of dopamine transporters and correlated behaviors in recombinant inbred mice. J Pharma Exp Ther 298:634–643

    CAS  Google Scholar 

  72. Borgkvist A, Valjent E, Santini E, Herve D, Girault JA, Fisone G (2008) Delayed, context- and dopamine D1 receptor-dependent activation of ERK in morphine-sensitized mice. Neuropharmacol 55:230–237

    CAS  Google Scholar 

  73. Broadbent J, Kampmueller KM, Koonse SA (2003) Expression of behavioral sensitization to ethanol by DBA/2 J mice: the role of NMDA and non-NMDA glutamate receptors. Psychopharmacology (Berl)167:225–234

    CAS  Google Scholar 

  74. Meyer PJ, Phillips TJ (2003) Bivalent effects of MK-801 on ethanol-induced sensitization do not parallel its effects on ethanol-induced tolerance. Behav Neurosci 117:641–649

    PubMed  CAS  Google Scholar 

  75. Sofuoglu M, Sewell RA (2009) Norepinephrine and stimulant addiction. Addict Biol 14:119–129

    PubMed  CAS  Google Scholar 

  76. Kotlinska J, Bochenski M (2009) Pretreatment with group I metabotropic glutamate receptors antagonists attenuates lethality induced by acute cocaine overdose and expression of sensitization to hyperlocomotor effect of cocaine in mice. Neurotox Res (Published Online Nov 21, 2009). doi:10.1007/s12640-009-9136-8

    Google Scholar 

  77. Szumlinski KK, Abernathy KE, Oleson EB, Klugmann M, Lominac KD, He DY, Ron D, During M, Kalivas PW (2006) Homer isoforms differentially regulate cocaine-induced neuroplasticity. Neuropsychopharmacology 31:768–777

    PubMed  CAS  Google Scholar 

  78. Zweifel LS, Argilli E, Bonci A, Palmiter RD (2008) Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 59:486–496

    PubMed  CAS  Google Scholar 

  79. Bahi A, Boyer F, Chandrasekar V, Dreyer JL (2008) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology 199:169–182

    PubMed  CAS  Google Scholar 

  80. Narendran R, Martinez D (2008) Cocaine abuse and sensitization of striatal dopamine transmission: a critical review of the preclinical and clinical imaging literature. Synapse 62:851–869

    PubMed  CAS  Google Scholar 

  81. Holstein SE, Dobbs L, Phillips TJ (2009) Attenuation of the stimulant response to ethanol is associated with enhanced ataxia for a GABA, but not a GABA, receptor agonist. Alcohol Clin Exp Res 33:108–120

    PubMed  CAS  Google Scholar 

  82. Meyer PJ, Phillips TJ (2003) Sensitivity to ketamine, alone or in combination with ethanol, is altered in mice selectively bred for sensitivity to ethanol’s locomotor effects. Alcohol Clin Exp Res 27:1701–1709

    PubMed  CAS  Google Scholar 

  83. Davidson C, Lazarus C, Xiong X, Lee TH, Ellinwood EH (2002) 5-HT2 receptor antagonists given in the acute withdrawal from daily cocaine injections can reverse established sensitization. Eur J Pharmacol 453:255–263

    PubMed  CAS  Google Scholar 

  84. Doetschman T (2009) Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol 530:423–433

    PubMed  CAS  Google Scholar 

  85. Eisener-Dorman AF, Lawrence DA, Bolivar VJ (2009) Cautionary insights on knockout mouse studies: the gene or not the gene? Brain Behav Immun 23:318–324

    PubMed  CAS  Google Scholar 

  86. Gerlai R (1996) Gene targeting in neuroscience: the systemic approach. Trends Neurosci 19:188–189

    CAS  Google Scholar 

  87. Harrison SJ, Nobrega JN (2009) A functional role for the dopamine D3 receptor in the induction and expression of behavioural sensitization to ethanol in mice. Psychopharmacology 207:47–56

    PubMed  CAS  Google Scholar 

  88. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    PubMed  CAS  Google Scholar 

  89. Robinson TE, Berridge KC (2008) The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363:3137–3146

    PubMed  Google Scholar 

  90. Carelli RM (2004) Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed behaviors in rats. Neuropharmacology 47:180–189

    PubMed  CAS  Google Scholar 

  91. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    PubMed  Google Scholar 

  92. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    PubMed  CAS  Google Scholar 

  93. Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    PubMed  CAS  Google Scholar 

  94. Wise RA (2008) Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res 14:169–183

    PubMed  Google Scholar 

  95. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    PubMed  CAS  Google Scholar 

  96. Koob GF (2009) Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry 42:S32–S41

    PubMed  Google Scholar 

  97. Blaszczynski A, Nower LA (2002) Pathways model of problem and pathological gambling. Addiction 97:487–499

    PubMed  Google Scholar 

  98. Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56:122–132

    PubMed  CAS  Google Scholar 

  99. Davis C, Carter JC (2009) Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 53:1–8

    PubMed  Google Scholar 

  100. Fenu S, Wardas J, Morelli M (2009) Impulse control disorders and dopamine dysregulation syndrome associated with dopamine agonist therapy in Parkinson’s disease. Behav Pharmacol 20:363–379

    PubMed  CAS  Google Scholar 

  101. Fiorino DF, Phillips AG (1999) Facilitation of sexual behavior and enhanced dopamine efflux in the nucleus accumbens of male rats after d-amphetamine-induced behavioral sensitization. J Neurosci 19:456–463

    PubMed  CAS  Google Scholar 

  102. Mathes WF, Brownley KA, Mo X, Bulik CM (2009) The biology of binge eating. Appetite 52:545–553

    PubMed  CAS  Google Scholar 

  103. Roitman MF, Na E, Anderson G, Jones TA, Bernstein IL (2002) Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J Neurosci 22:RC225

    PubMed  Google Scholar 

  104. Zack M, Poulos CX (2004) Amphetamine primes motivation to gamble and gambling-related semantic networks in problem gamblers. Neuropsychopharmacology 29:195–207

    PubMed  CAS  Google Scholar 

  105. Zack M, Poulos CX (2009) Parallel roles for dopamine in pathological gambling and psychostimulant addiction. Curr Drug Abuse Rev 2:11–25

    PubMed  CAS  Google Scholar 

  106. Abercrombie ED, Keefe KA, Di Frischia DS, Zigmend MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens and medial frontal cortex. J Neurochem 52:1655–1658

    PubMed  CAS  Google Scholar 

  107. Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    PubMed  CAS  Google Scholar 

  108. Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of the mesocortical DA system by stress. Nature 263:242–243

    PubMed  CAS  Google Scholar 

  109. Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36:129–138

    PubMed  CAS  Google Scholar 

  110. Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    PubMed  Google Scholar 

  111. Bechara A, Dolan S, Hindes A (2002) Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia 40:1690–1705

    PubMed  Google Scholar 

  112. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 146:373–390

    CAS  Google Scholar 

  113. Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    PubMed  CAS  Google Scholar 

  114. Schoenbaum G, Shaham Y (2008) The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 63:256–262

    PubMed  CAS  Google Scholar 

  115. Lett BT (1989) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berl) 98:357–362

    CAS  Google Scholar 

  116. Lorrain DS, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107:9–19

    PubMed  CAS  Google Scholar 

  117. McSweeney FK, Murphy ES, Kowal BP (2005) Regulation of drug taking by sensitization and habituation. Exp Clin Psychopharmacol 13:163–184

    PubMed  CAS  Google Scholar 

  118. Piazza PV, Deminière JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    PubMed  CAS  Google Scholar 

  119. Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27:827–839

    PubMed  CAS  Google Scholar 

  120. Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    PubMed  Google Scholar 

  121. Di Ciano P, Benham-Hermetz J, Fogg AP, Osborne GE (2007) Role of the prelimbic cortex in the acquisition, re-acquisition or persistence of responding for a drug-paired conditioned reinforcer. Neuroscience 150:291–298

    PubMed  CAS  Google Scholar 

  122. Taylor JR, Horger BA (1999) Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology (Berl) 142:31–40

    CAS  Google Scholar 

  123. Uslaner JM, Acerbo MJ, Jones SA, Robinson TE (2006) The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behav Brain Res 169:320–324

    PubMed  CAS  Google Scholar 

  124. Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840

    PubMed  CAS  Google Scholar 

  125. Tindell AJ, Berridge KC, Zhang J, Pecina S, Aldridge JW (2005) Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 22:2617–2634

    PubMed  Google Scholar 

  126. Bradberry CW (2008) Comparison of acute and chronic neurochemical effects of cocaine and cocaine cues in rhesus monkeys and rodents: focus on striatal and cortical dopamine systems. Rev Neurosci 19:113–128

    PubMed  Google Scholar 

  127. Hirabayashi M, Alam MR (1981) Enhancing effect of methamphetamine on ambulatory activity produced by repeated administration in mice. Pharmacol Biochem Behav 15:925–932

    PubMed  CAS  Google Scholar 

  128. Kalivas PW, Duffy P, Dilts R, Abhold R (1988) Enkephalin modulation of A10 dopamine neurons: a role in dopamine sensitization. Ann NY Acad Sci 537:405–414

    PubMed  CAS  Google Scholar 

  129. Nakamura H, Hishinuma T, Tomioka Y, Ido T, Iwata R, Funaki Y, Itoh M, Fujiwara T, Yanai K, Sato M, Numachi Y, Yoshida S, Mizugaki M (1996) Positron emission tomography study of the alterations in brain distribution of [11C]methamphetamine in methamphetamine-sensitized dog. Ann NY Acad Sci 801:401–408

    PubMed  CAS  Google Scholar 

  130. Schwandt ML, Higley JD, Suomi SJ, Heilig M, Barr CS (2008) Rapid tolerance and locomotor sensitization in ethanol-naïve adolescent rhesus macaques. Alcohol Clin Exp Res 32:1217–1228

    PubMed  CAS  Google Scholar 

  131. Wallach MB, Gershon S (1971) Sensitization to amphetamines. Psychopharmacol Bull 7:30–31

    PubMed  CAS  Google Scholar 

  132. Weiner WJ, Goetz CG, Nausieda PA, Klawans HL (1979) Amphetamine-induced hypersensitivity in guinea pigs. Neurology 29:1054–1057

    PubMed  CAS  Google Scholar 

  133. Heberlein U, Tsai LT, Kapfhamer D, Lasek AW (2009) Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology 56(Suppl 1):97–106

    PubMed  CAS  Google Scholar 

  134. McClung C, Hirsh J (1998) Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Curr Biol 8:109–112

    PubMed  CAS  Google Scholar 

  135. Benwell MEM, Balfour DJK (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    PubMed  CAS  Google Scholar 

  136. Joyce EM, Iversen SD (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci Lett 14:207–212

    PubMed  CAS  Google Scholar 

  137. Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275

    PubMed  CAS  Google Scholar 

  138. Kapasova Z, Szumlinski KK (2008) Strain differences in alcohol-induced neurochemical plasticity: a role for accumbens glutamate in alcohol intake. Alcohol Clin Exp Res 32:617–631

    PubMed  CAS  Google Scholar 

  139. Kazahaya Y, Akimoto K, Otsuki S (1989) Subchronic methamphetamine treatment enhances methamphetamine- or cocaine-induced dopamine efflux in vivo. Biol Psychiatry 25:903–912

    PubMed  CAS  Google Scholar 

  140. Zapata A, Chefer VI, Ator R, Shippenberg TS, Rocha BA (2003) Behavioural sensitization and enhanced dopamine response in the nucleus accumbens after intravenous cocaine self-administration in mice. Eur J Neurosci 17:590–596

    PubMed  Google Scholar 

  141. Zapata A, Gonzales RA, Shippenberg TS (2006) Repeated ethanol intoxication induces behavioral sensitization in the absence of a sensitized accumbens dopamine response in C57BL/6 J and DBA/2 J mice. Neuropsychopharmacology 31:396–405

    PubMed  CAS  Google Scholar 

  142. Berger SP, Hall S, Mickalian JD, Reid MS, Crawford CA, Delucchi K, Carr K, Hall S (1996) Haloperidol antagonism of cue-elicited cocaine craving. Lancet 347:504–508

    PubMed  CAS  Google Scholar 

  143. Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395

    PubMed  CAS  Google Scholar 

  144. Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, Diksic M, Benkelfat C (2007) Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. J Neurosci 27:3998–4003

    PubMed  CAS  Google Scholar 

  145. Breier A, Su T-P, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    PubMed  CAS  Google Scholar 

  146. Cox SM, Benkelfat C, Dagher A, Delaney JS, Durand F, McKenzie SA, Kolivakis T, Casey KF, Leyton M (2006) Striatal dopamine responses to intranasal cocaine self-administration in humans. Biol Psychiatry 65:846–850

    Google Scholar 

  147. Foltin RW, Ward AS, Haney M, Hart CL, Collins ED (2003) The effects of escalating doses of smoked cocaine in humans. Drug Alcohol Depend 70:149–157

    PubMed  CAS  Google Scholar 

  148. Johanson CE, Uhlenhuth EH (1981) Drug preference and mood in humans: repeated assessment of d-amphetamine. Pharmacol Biochem Behav 14:159–163

    PubMed  CAS  Google Scholar 

  149. Kegeles LS, Zea-Ponce Y, Abi-Dargham A, Rodenhiser J, Wang T, Weiss R, Van Heertum RL, Mann JJ, Laruelle M (1999) Stability of [123I]IBZM SPECT measurement of amphetamine-induced striatal dopamine release in humans. Synapse 31:302–308

    PubMed  CAS  Google Scholar 

  150. Kelly TH, Foltin RW, Fischman MW (1991) The effects of repeated amphetamine exposure on multiple measures of human behavior. Pharmacol Biochem Behav 38:417–426

    PubMed  CAS  Google Scholar 

  151. Leyton M, Casey KF, Delaney JS, Kolivakis T, Benkelfat C (2005) Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. Behav Neurosci 119:1619–1627

    PubMed  CAS  Google Scholar 

  152. Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A, Huang Y, Cooper TB, Fischman MW, Kleber HD, Laruelle M (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164:622–629

    PubMed  Google Scholar 

  153. Nagoshi C, Kumor KM, Muntaner C (1992) Test–retest stability of cardiovascular and subjective responses to intravenous cocaine in humans. Br J Addict 87:591–599

    PubMed  CAS  Google Scholar 

  154. Newlin DB, Thomson JB (1991) Chronic tolerance and sensitization to alcohol in sons of alcoholics. Alcohol Clin Exp Res 15:399–405

    PubMed  CAS  Google Scholar 

  155. Newlin DB, Thomson JB (1999) Chronic tolerance and sensitization to alcohol in sons of alcoholics: II. Replication and reanalysis. Exp Clin Psychopharmacol 7:234–243

    PubMed  CAS  Google Scholar 

  156. Rothman RB, Gorelick DA, Baumann MH, Guo XY, Herning RI, Pickworth WB, Gendron TM, Koeppl B, Thomson LE III, Henningfield JE (1994) Lack of evidence for context-dependent cocaine-induced sensitization in humans: preliminary studies. Pharmacol Biochem Behav 49:583–588

    PubMed  CAS  Google Scholar 

  157. Sax KW, Strakowski SM (1998) Enhanced behavioral response to repeated d-amphetamine and personality traits in humans. Biol Psychiatry 44:1192–1195

    PubMed  CAS  Google Scholar 

  158. Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated d-amphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44:1171–1177

    PubMed  CAS  Google Scholar 

  159. Strakowski SM, Sax KW, Setters MJ, Keck PE Jr (1996) Enhanced response to repeated d-amphetamine challenge: evidence for behavioral sensitization in humans. Biol Psychiatry 40:872–880

    PubMed  CAS  Google Scholar 

  160. Strakowski SM, Sax KW, Rosenberg HL, DelBello MP, Adler CM (2001) Human response to repeated low dose d-amphetamine: evidence for behavioral enhancement and tolerance. Neuropsychopharmacol 25:548–554

    CAS  Google Scholar 

  161. Szechtman H, Cleghorn JM, Brown GM, Kaplan RD, Franco S, Rosenthal K (1998) Sensitization and tolerance to apomorphine in men: yawning, growth hormone, nausea, and hyperthermia. Psychiatry Res 23:245–255

    Google Scholar 

  162. Volkow ND, Wang G-J, Telang F, Fowler JS, Logan J, Childress A-R, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    PubMed  CAS  Google Scholar 

  163. Wong DF, Kuwabara H, Schretlen DJ, Bonson KR, Zhou Y, Nandi A, Brasić JR, Kimes AS, Maris MA, Kumar A, Contoreggi C, Links J, Ernst M, Rousset O, Zukin S, Grace AA, Lee JS, Rohde C, Jasinski DR, Gjedde A, London ED (2006) Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacol 31:2716–2727

    CAS  Google Scholar 

  164. Leyton M (2007) Conditioned and sensitized responses to stimulant drugs in humans.Prog Neuropsychopharmacol. Biol Psychiatry 31:1601–1613

    CAS  Google Scholar 

  165. Ellinwood EH Jr (1968) Amphetamine psychosis. II. Theoretical implications. Int J Neuropsychiatry 4:45–54

    PubMed  Google Scholar 

  166. Ellinwood EH Jr, Balster RL (1974) Rating the behavioral effects of amphetamine. Eur J Pharmacol 28:35–41

    PubMed  CAS  Google Scholar 

  167. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    PubMed  CAS  Google Scholar 

  168. Blackburn JR, Pfaus JG, Phillips AG (1992) Dopamine functions in appetitive and defensive behaviours. Prog Neurobiol 39:247–279

    PubMed  CAS  Google Scholar 

  169. Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    PubMed  CAS  Google Scholar 

  170. Kuribara H (1996) Effects of interdose interval on ambulatory sensitization to methamphetamine, cocaine and morphine in mice. Eur J Pharmacol 316:1–5

    PubMed  CAS  Google Scholar 

  171. Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412:141–142

    PubMed  CAS  Google Scholar 

  172. Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219

    PubMed  CAS  Google Scholar 

  173. Biagioni F, Pellegrini A, Ruggieri S, Murri L, Paparelli A, Fornai F (2009) Behavioural sensitisation during dopamine replacement therapy in Parkinson’s disease is reminiscent of the addicted brain. Curr Top Med Chem 9:894–902

    PubMed  CAS  Google Scholar 

  174. Fornai F, Biagioni F, Fulceri F, Murri L, Ruggieri S, Paparelli A (2009) Intermittent dopaminergic stimulation causes behavioral sensitization in the addicted brain and parkinsonism. Int Rev Neurobiol 88:371–398

    PubMed  CAS  Google Scholar 

  175. Hirabayashi M, Okada S, Tadokoro S (1991) Comparison of sensitization to ambulation-increasing effects of cocaine and methamphetamine after repeated administration in mice. J Pharm Pharmacol 43:827–830

    PubMed  CAS  Google Scholar 

  176. King GR, Xiong Z, Ellinwood EH Jr (1998) Blockade of the expression of sensitization and tolerance by ondansetron, a 5-HT3 receptor antagonist, administered during withdrawal from intermittent and continuous cocaine. Psychopharmacology 135:263–269

    PubMed  CAS  Google Scholar 

  177. Meyer PJ, Phillips TJ (2007) Behavioral sensitization to ethanol does not result in cross-sensitization to NMDA receptor antagonists. Psychopharmacology (Berl) 195:103–115

    CAS  Google Scholar 

  178. Broadbent J, Kampmueller KM, Koonse SA (2005) Role of dopamine in behavioral sensitization to ethanol in DBA/2 J mice. Alcohol 35:137–148

    PubMed  CAS  Google Scholar 

  179. Didone V, Quoilin C, Tirelli E, Quertemont E (2008) Parametric analysis of the development and expression of ethanol-induced behavioral sensitization in female Swiss mice: effects of dose, injection schedule, and test context. Psychopharmacology (Berl) 201:249–260

    CAS  Google Scholar 

  180. Grahame NJ, Rodd-Henricks K, Li T-K, Lumeng L (2000) Ethanol locomotor sensitization, but not tolerance correlates with selection for alcohol preference in high- and low-alcohol preferring mice. Psychopharmacology (Berl) 151:252–260

    CAS  Google Scholar 

  181. Kayir H, Uzbay IT (2002) Investigation of a possible sensitization development to a challenge dose of ethanol after 2 weeks following the single injection in mice. Pharmacol Biochem Behav 73:551–556

    PubMed  CAS  Google Scholar 

  182. Lessov CN, Palmer AA, Quick EA, Phillips TJ (2001) Voluntary ethanol drinking in C57BL/6 J and DBA/2 J mice before and after sensitization to the locomotor stimulant effects of ethanol. Psychopharmacology (Berl) 155:91–99

    CAS  Google Scholar 

  183. Quadros IM, Hipólide DC, Frussa-Filho R, De Lucca EM, Nobrega JN, Souza-Formigoni ML (2002) Resistance to ethanol sensitization is associated with increased NMDA receptor binding in specific brain areas. Eur J Pharmacol 442:55–61

    PubMed  CAS  Google Scholar 

  184. Jasova D, Bob P, Fedor-Freybergh P (2007) Alcohol craving, limbic irritability, and stress. Med Sci Monit 13:CR543–CR547

    PubMed  Google Scholar 

  185. Becker HC, Diaz-Granados JL, Weathersby RT (1997) Repeated ethanol withdrawal experience increases the severity and duration of subsequent withdrawal seizures in mice. Alcohol 14:319–326

    PubMed  CAS  Google Scholar 

  186. Becker HC, Lopez MF (2004) Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res 28:1829–1838

    PubMed  CAS  Google Scholar 

  187. O’Dell LE, Roberts AJ, Smith RT, Koob GF (2004) Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res 28:1676–1682

    PubMed  Google Scholar 

  188. Bailey A, Metaxas A, Yoo JH, McGee T, Kitchen I (2008) Decrease of D2 receptor binding but increase in D2-stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose ‘binge’ cocaine administration paradigm. Eur J Neurosci 28:759–770

    PubMed  CAS  Google Scholar 

  189. Fish EW, DeBold JF, Miczek KA (2002) Repeated alcohol: behavioral sensitization and alcohol-heightened aggression in mice. Psychopharmacology (Berl) 160:39–48

    CAS  Google Scholar 

  190. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    PubMed  CAS  Google Scholar 

  191. Wahlsten D, Bachmanov A, Finn DA, Crabbe JC (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci USA 103:16364–16369

    PubMed  CAS  Google Scholar 

  192. Phillips TJ, Burkhart-Kasch S, Terdal ES, Crabbe JC (1991) Response to selection for ethanol-induced locomotor activation: genetic analyses and selection response characterization. Psychopharmacology 103:557–566

    PubMed  CAS  Google Scholar 

  193. Nuutinen S, Karlstedt K, Aitta-Aho T, Korpi ER, Panula P (2010) Histamine and H3 receptor dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology 208:75–86

    PubMed  CAS  Google Scholar 

  194. Fujii H, Ishihama T, Ago Y, Shintani N, Kakuda M, Hashimoto H, Baba A, Matsuda T (2007) Methamphetamine-induced hyperactivity and behavioral sensitization in PACAP deficient mice. Peptides 28:1674–1679

    PubMed  CAS  Google Scholar 

  195. Kelly MA, Low MJ, Rubinstein M, Phillips TJ (2008) Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice. Genes Brain Behav 7:568–577

    PubMed  CAS  Google Scholar 

  196. Ago Y, Nakamura S, Kajita N, Uda M, Hashimoto H, Baba A, Matsuda T (2007) Ritanserin reverses repeated methamphetamine-induced behavioral and neurochemical sensitization in mice. Synapse 61:757–763

    PubMed  CAS  Google Scholar 

  197. Kamens HM, Burkhart-Kasch S, McKinnon CS, Li N, Reed C, Phillips TJ (2005) Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine. Genes Brain Behav 4:110–125

    PubMed  CAS  Google Scholar 

  198. Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J Neurosci 13:276–284

    PubMed  CAS  Google Scholar 

  199. Faria RR, Lima Rueda AV, Sayuri C, Soares SL, Malta MB, Carrara-Nascimento PF, da Silva Alves A, Marcourakis T, Yonamine M, Scavone C, Giorgetti Britto LR, Camarini R (2008) Environmental modulation of ethanol-induced locomotor activity: correlation with neuronal activity in distinct brain regions of adolescent and adult Swiss mice. Brain Res 1239:127–140

    PubMed  CAS  Google Scholar 

  200. Vezina P, Leyton M (2009) Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56(Suppl 1):160–168

    PubMed  CAS  Google Scholar 

  201. Quadros IM, Souza-Formigoni ML, Fornari RV, Nobrega JN, Oliveira MG (2003) Is behavioral sensitization to ethanol associated with contextual conditioning in mice? Behav Pharmacol 14:129–136

    PubMed  CAS  Google Scholar 

  202. Singer BF, Tanabe LM, Gorny G, Jake-Matthews C, Li Y, Kolb B, Vezina P (2009) Amphetamine-induced changes in dendritic morphology in rat forebrain correspond to associative drug conditioning rather than nonassociative drug sensitization. Biol Psychiatry 65:835–840

    PubMed  CAS  Google Scholar 

  203. Marin MT, Berkow A, Golden SA, Koya E, Planeta CS, Hope BT (2009) Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in the rat nucleus accumbens. Eur J Neurosci 30:1931–1940

    PubMed  Google Scholar 

  204. Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354

    PubMed  CAS  Google Scholar 

  205. Vezina P, Giovino AA, Wise RA, Stewart J (1989) Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacol Biochem Behav 32:581–584

    PubMed  CAS  Google Scholar 

  206. Yetnikoff L, Arvanitogiannis A (2005) A role for affect in context-dependent sensitization to amphetamine. Behav Neurosci 119:1678–1681

    PubMed  CAS  Google Scholar 

  207. Knych ET, Eisenberg RM (1979) Effect of amphetamine on plasma corticosterone in the conscious rat. Neuroendocrinology 29:110–118

    PubMed  CAS  Google Scholar 

  208. Lowy MT, Novotney S (1994) Methamphetamine-induced decrease in neural glucocorticoid receptors: relationship to monoamine levels. Brain Res 638:175–181

    PubMed  CAS  Google Scholar 

  209. Rivier C (1996) Alcohol stimulates ACTH secretion in the rat: mechanisms of action and interactions with other stimuli. Alcohol Clin Exp Res 20:240–254

    PubMed  CAS  Google Scholar 

  210. Zhou Y, Spangler R, Schlussman SD, Yuferov VP, Sora I, Ho A, Uhl GR, Kreek MJ (2002) Effects of acute “binge” cocaine on preprodynorphin, preproenkephalin, proopiomelanocortin, and corticotropin-releasing hormone receptor mRNA levels in the striatum and hypothalamic–pituitary–adrenal axis of mu-opioid receptor knockout mice. Synapse 45:220–229

    PubMed  CAS  Google Scholar 

  211. de Jong IE, Oitzl MS, de Kloet ER (2007) Adrenalectomy prevents behavioural sensitisation of mice to cocaine in a genotype-dependent manner. Behav Brain Res 177:329–339

    PubMed  Google Scholar 

  212. Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15:7181–7188

    PubMed  CAS  Google Scholar 

  213. Araujo NP, Camarini R, Souza-Formigoni ML, Carvalho RC, Abílio VC, Silva RH, Ricardo VP, Ribeiro Rde A, Frussa-Filho R (2005) The importance of housing conditions on behavioral sensitization and tolerance to ethanol. Pharmacol Biochem Behav 82:40–45

    PubMed  CAS  Google Scholar 

  214. Meyer PJ, Palmer AA, McKinnon CS, Phillips TJ (2005) Behavioral sensitization to ethanol is modulated by environmental conditions, but is not associated with cross-sensitization to allopregnanolone or pentobarbital in DBA/2 J mice. Neuroscience 131:263–273

    PubMed  CAS  Google Scholar 

  215. Chauvet C, Lardeux V, Goldberg SR, Jaber M, Solinas M (2009) Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology 34:2767–2778

    PubMed  Google Scholar 

  216. Yui K, Goto K, Ikemoto S, Ishiguro T, Angrist B, Duncan GE, Sheitman BB, Lieberman JA, Bracha SH, Ali SF (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol Psychiatry 4:512–523

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Department of Veterans Affairs, NIDA grant P50 DA018165, and NIAAA grants P60 AA010760, U01 AA016655, and F31 AA018043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara J. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Phillips, T.J., Pastor, R., Scibelli, A.C., Reed, C., Tarragón, E. (2011). Behavioral Sensitization to Addictive Drugs: Clinical Relevance and Methodological Aspects. In: Raber, J. (eds) Animal Models of Behavioral Analysis. Neuromethods, vol 50. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-883-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-883-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-882-9

  • Online ISBN: 978-1-60761-883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics