Skip to main content

Ocular Immune Privilege Sites

  • Protocol
  • First Online:
Suppression and Regulation of Immune Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 677))

Abstract

The eye is one of the immune privilege sites of the body that is consequently protected from the detrimental and potentially blinding influences of immunologic inflammation. Within the eye, the anterior chamber has been recognized for its immune privilege property for many years now; however, a similar property detectable in the subretinal space has only recently been appreciated. These ocular sites are not only equipped with specialized mechanisms that barricade local inflammatory responses, but also induce systemic regulatory immune response. Numerous studies have characterized molecular and cellular mechanisms involved in conferring both these sites with an immune privilege status. Pigmented epithelial cells lining the anterior chamber in the iris and ciliary body area as well as those in the retina are endowed with immunomodulatory properties that contribute to ocular immune privilege. These cells, via expression of either soluble factors or membrane molecules, inhibit inflammatory T cell activation and promote the generation of regulatory T cells. In the anterior chamber resident antigen-presenting cells, influenced by the various immunosuppressive factors present in the aqueous humor, capture ocular antigens and present them in the spleen to T cells in association with NKT cells and marginal zone B cells. Immunomodulatory microenvironment created by these cells helps generate regulatory T cells, capable of interrupting the induction as well as expression of inflammatory responses. Furthermore, neural regulation of both intraocular and systemic regulatory mechanisms also contributes to ocular immune privilege.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medawar, P. B. (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29, 58–69

    PubMed  CAS  Google Scholar 

  2. Niederkorn, J., Streilein, J. W., and Shadduck, J. A. (1981) Deviant immune responses to allogeneic tumors injected intracamerally and subcutaneously in mice. Invest Ophthalmol Vis Sci 20, 355–363

    PubMed  CAS  Google Scholar 

  3. Jiang, L. Q., Jorquera, M., and Streilein, J. W. (1993) Subretinal space and vitreous cavity as immunologically privileged sites for retinal allografts. Invest Ophthalmol Vis Sci 34, 3347–3354

    PubMed  CAS  Google Scholar 

  4. Streilein, J. W., Masli, S., Takeuchi, M., and Kezuka, T. (2002) The eye’s view of antigen presentation. Hum Immunol 63, 435–443

    Article  PubMed  CAS  Google Scholar 

  5. Taylor, A. W. (2007) Ocular immunosuppressive microenvironment. Chem Immunol Allergy 92, 71–85

    Article  PubMed  CAS  Google Scholar 

  6. Sugita, S., Futagami, Y., Smith, S. B., Naggar, H., and Mochizuki, M. (2006) Retinal and ciliary body pigment epithelium suppress activation of T lymphocytes via transforming growth factor beta. Exp Eye Res 83, 1459–1471

    Article  PubMed  CAS  Google Scholar 

  7. Yoshida, M., Takeuchi, M., and Streilein, J. W. (2000) Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation in vitro by direct cell-to-cell contact. Invest Ophthalmol Vis Sci 41, 811–821

    PubMed  CAS  Google Scholar 

  8. Yoshida, M., Kezuka, T., and Streilein, J. W. (2000) Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 2. Generation of TGF-beta-producing regulatory T cells. Invest Ophthalmol Vis Sci 41, 3862–3870

    PubMed  CAS  Google Scholar 

  9. Pfeffer, B. A., Flanders, K. C., Guerin, C. J., Danielpour, D., and Anderson, D. H. (1994) Transforming growth factor beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp Eye Res 59, 323–333

    Article  PubMed  CAS  Google Scholar 

  10. Usui, Y., Okunuki, Y., Hattori, T., Kezuka, T., Keino, H., Ebihara, N., Sugita, S., Usui, M., Goto, H., and Takeuchi, M. (2008) Functional expression of B7H1 on retinal pigment epithelial cells. Exp Eye Res 86, 52–59

    Article  PubMed  CAS  Google Scholar 

  11. Sugita, S., Horie, S., Nakamura, O., Futagami, Y., Takase, H., Keino, H., Aburatani, H., Katunuma, N., Ishidoh, K., Yamamoto, Y., and Mochizuki, M. (2008) Retinal pigment epithelium-derived CTLA-2alpha induces TGFbeta-producing T regulatory cells. J Immunol 181, 7525–7536

    PubMed  CAS  Google Scholar 

  12. Wenkel, H., and Streilein, J. W. (2000) Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci 41, 3467–3473

    PubMed  CAS  Google Scholar 

  13. Saika, S. (2006) TGFbeta pathobiology in the eye. Lab Invest 86, 106–115

    Article  PubMed  CAS  Google Scholar 

  14. Wilbanks, G. A., and Streilein, J. W. (1990) Distinctive humoral immune responses following anterior chamber and intravenous administration of soluble antigen. Evidence for active suppression of IgG2-secreting B lymphocytes. Immunology 71, 566–572

    PubMed  CAS  Google Scholar 

  15. Ksander, B. R., and Streilein, J. W. (1989) Analysis of cytotoxic T cell responses to intracameral allogeneic tumors. Invest Ophthalmol Vis Sci 30, 323–329

    PubMed  CAS  Google Scholar 

  16. Kosiewicz, M. M., Okamoto, S., Miki, S., Ksander, B. R., Shimizu, T., and Streilein, J. W. (1994) Imposing deviant immunity on the presensitized state. J Immunol 153, 2962–2973

    PubMed  CAS  Google Scholar 

  17. Wilbanks, G. A., and Streilein, J. W. (1990) Characterization of suppressor cells in anterior chamber-associated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology 71, 383–389

    PubMed  CAS  Google Scholar 

  18. Saban, D. R., Cornelius, J., Masli, S., Schwartzkopff, J., Doyle, M., Chauhan, S. K., Peck, A. B., and Grant, M. B. (2008) The role of ACAID and CD4+CD25+ FOXP3+ regulatory T cells on CTL function against MHC alloantigens. Mol Vis 14, 2435–2442

    PubMed  CAS  Google Scholar 

  19. Zhang, H., Yang, P., Zhou, H., Meng, Q., and Huang, X. (2008) Involvement of Foxp3-expressing CD4+ CD25+ regulatory T cells in the development of tolerance induced by transforming growth factor-beta2-treated antigen-presenting cells. Immunology 124, 304–314

    Article  PubMed  CAS  Google Scholar 

  20. Wilbanks, G. A., and Streilein, J. W. (1992) Macrophages capable of inducing anterior chamber associated immune deviation demonstrate spleen-seeking migratory properties. Reg Immunol 4, 130–137

    PubMed  CAS  Google Scholar 

  21. Faunce, D. E., Sonoda, K. H., and Stein-Streilein, J. (2001) MIP-2 recruits NKT cells to the spleen during tolerance induction. J Immunol 166, 313–321

    PubMed  CAS  Google Scholar 

  22. Kaplan, H. J., and Streilein, J. W. (1974) Do immunologically privileged sites require a functioning spleen? Nature 251, 553–554

    Article  PubMed  CAS  Google Scholar 

  23. Weigle, W. O. (1973) Immunological unresponsiveness. Adv Immunol 16, 61–122

    Article  PubMed  CAS  Google Scholar 

  24. Liblau, R. S., Tisch, R., Shokat, K., Yang, X., Dumont, N., Goodnow, C. C., and McDevitt, H. O. (1996) Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis. Proc Natl Acad Sci USA 93, 3031–3036

    Article  PubMed  CAS  Google Scholar 

  25. Williamson, J. S., Bradley, D., and Streilein, J. W. (1989) Immunoregulatory properties of bone marrow-derived cells in the iris and ciliary body. Immunology 67, 96–102

    PubMed  CAS  Google Scholar 

  26. Wilbanks, G. A., Mammolenti, M., and Streilein, J. W. (1992) Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-beta. Eur J Immunol 22, 165–173

    Article  PubMed  CAS  Google Scholar 

  27. Takeuchi, M., Kosiewicz, M. M., Alard, P., and Streilein, J. W. (1997) On the mechanisms by which transforming growth factor-beta 2 alters antigen-presenting abilities of macrophages on T cell activation. Eur J Immunol 27, 1648–1656

    Article  PubMed  CAS  Google Scholar 

  28. D’Orazio, T. J., and Niederkorn, J. Y. (1998) A novel role for TGF-beta and IL-10 in the induction of immune privilege. J Immunol 160, 2089–2098

    PubMed  Google Scholar 

  29. Takeuchi, M., Alard, P., and Streilein, J. W. (1998) TGF-beta promotes immune deviation by altering accessory signals of antigen-presenting cells. J Immunol 160, 1589–1597

    PubMed  CAS  Google Scholar 

  30. Kosiewicz, M. M., Alard, P., and Streilein, J. W. (1998) Alterations in cytokine production following intraocular injection of soluble protein antigen: impairment in IFN-gamma and induction of TGF-beta and IL-4 production. J Immunol 161, 5382–5390

    PubMed  CAS  Google Scholar 

  31. Kezuka, T., and Streilein, J. W. (2000) Analysis of in vivo regulatory properties of T cells activated in vitro by TGFbeta2-treated antigen presenting cells. Invest Ophthalmol Vis Sci 41, 1410–1421

    PubMed  CAS  Google Scholar 

  32. Hecker, K. H., Niizeki, H., and Streilein, J. W. (1999) Distinct roles for transforming growth factor-beta2 and tumour necrosis factor-alpha in immune deviation elicited by hapten-derivatized antigen-presenting cells. Immunology 96, 372–380

    Article  PubMed  CAS  Google Scholar 

  33. Masli, S., Turpie, B., and Streilein, J. W. (2006) Thrombospondin orchestrates the tolerance-promoting properties of TGFbeta-treated antigen-presenting cells. Int Immunol 18, 689–699

    Article  PubMed  CAS  Google Scholar 

  34. Masli, S., and Turpie, B. (2009) Anti-inflammatory effects of tumour necrosis factor (TNF)-alpha are mediated via TNF-R2 (p75) in tolerogenic transforming growth factor-beta-treated antigen-presenting cells. Immunology 127, 62–72

    Article  PubMed  CAS  Google Scholar 

  35. Ghafoori, P., Yoshimura, T., Turpie, B., and Masli, S. (2009) Increased IkappaB alpha expression is essential for the tolerogenic property of TGF-beta-exposed APCs. FASEB J 23, 2226–2234

    Article  PubMed  CAS  Google Scholar 

  36. Zamiri, P., Masli, S., Kitaichi, N., Taylor, A. W., and Streilein, J. W. (2005) Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 46, 908–919

    Article  PubMed  Google Scholar 

  37. Li, Z., He, L., Wilson, K., and Roberts, D. (2001) Thrombospondin-1 inhibits TCR-mediated T lymphocyte early activation. J Immunol 166, 2427–2436

    PubMed  CAS  Google Scholar 

  38. Van, V. Q., Darwiche, J., Raymond, M., Lesage, S., Bouguermouh, S., Rubio, M., and Sarfati, M. (2008) Cutting edge: CD47 controls the in vivo proliferation and homeostasis of peripheral CD4+ CD25+ Foxp3+ regulatory T cells that express CD103. J Immunol 181, 5204–5208

    PubMed  Google Scholar 

  39. Grimbert, P., Bouguermouh, S., Baba, N., Nakajima, T., Allakhverdi, Z., Braun, D., Saito, H., Rubio, M., Delespesse, G., and Sarfati, M. (2006) Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation. J Immunol 177, 3534–3541

    PubMed  CAS  Google Scholar 

  40. Avice, M. N., Rubio, M., Sergerie, M., Delespesse, G., and Sarfati, M. (2000) CD47 ligation selectively inhibits the development of human naive T cells into Th1 effectors. J Immunol 165, 4624–4631

    PubMed  CAS  Google Scholar 

  41. Streilein, J. W., Bradley, D., Sano, Y., and Sonoda, Y. (1996) Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest Ophthalmol Vis Sci 37, 413–424

    PubMed  CAS  Google Scholar 

  42. Vega, J. L., Keino, H., and Masli, S. (2009) Surgical denervation of ocular sympathetic afferents decreases local transforming growth factor-beta and abolishes immune privilege. Am J Pathol 175, 1218–1225

    Article  PubMed  CAS  Google Scholar 

  43. Taylor, A. W., and Yee, D. G. (2003) Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 44, 2644–2649

    Article  PubMed  Google Scholar 

  44. Taylor, A. W., Streilein, J. W., and Cousins, S. W. (1994) Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J Immunol 153, 1080–1086

    PubMed  CAS  Google Scholar 

  45. Taylor, A., and Namba, K. (2001) In vitro induction of CD25+ CD4+ regulatory T cells by the neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH). Immunol Cell Biol 79, 358–367

    Article  PubMed  CAS  Google Scholar 

  46. Taylor, A. W., Yee, D. G., and Streilein, J. W. (1998) Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor. Invest Ophthalmol Vis Sci 39, 1372–1378

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Masli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Masli, S., Vega, J.L. (2010). Ocular Immune Privilege Sites. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 677. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-869-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-869-0_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-868-3

  • Online ISBN: 978-1-60761-869-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics