Regulation of Lymphocytes by Nitric Oxide

  • Christian Bogdan
Part of the Methods in Molecular Biology book series (MIMB, volume 677)


Shortly after the identification of nitric oxide (NO) as a product of macrophages, it was discovered that NO generated by inducible NO synthase (iNOS) inhibits the proliferation of T lymphocytes. Since then, it has become clear that iNOS activity also regulates the development, differentiation, and/or function of various types of T cells and B cells and also affects NK cells. The three key mechanisms underlying the iNOS-dependent immunoregulation are (a) the modulation of signaling processes by NO, (b) the depletion of arginine, and (c) the alteration of accessory cell functions. This chapter highlights important principles of iNOS-dependent immunoregulation of lymphocytes and also reviews more recent evidence for an effect of endothelial or neuronal NO synthase in lymphocytes.

Key words

Nitric oxide Inducible nitric oxide synthase Endothelial nitric oxide synthase Neuronal nitric oxide synthase Arginase Myeloid (-derived) suppressor cells T lymphocytes B lymphocytes Natural killer cells 



I wish to apologize to all researchers whose work could only be cited in form of review articles due to space restrictions. The preparation of this chapter and the conduct of some of the studies reviewed were supported by grants to C.B. from the Deutsche Forschungsgemeinschaft (Bo996/3-3, SFB643 A6) and from the IZKF Erlangen (Project A24).


  1. 1.
    Vignali, D. A., Collison, L. W., and Workman, C. J. (2008) How regulatory T cells work. Nat Rev Immunol 8, 523–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Lutz, M. B., and Schuler, G. (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23, 445–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Kuang, D. M., Zhao, Q., Xu, J., Yun, J. P., Wu, C., and Zheng, L. (2008) Tumor-educated tolerogenic dendritic cells induce CD3epsilon down-regulation and apoptosis of T cells through oxygen-dependent pathways. J Immunol 181, 3089–98.PubMedGoogle Scholar
  4. 4.
    Zhang, M., Tang, H., Guo, Z., An, H., Zhu, X., Song, W., Guo, J., Huang, X., Chen, T., Wang, J., and Cao, X. (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5, 1124–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Ren, G., Su, J., Zhao, X., Zhang, L., Zhang, J., Roberts, A. I., Zhang, H., Das, G., and Shi, Y. (2008) Apoptotic cells induce immunosuppression through dendritic cells: critical roles of IFN-gamma and nitric oxide. J Immunol 181, 3277–84.PubMedGoogle Scholar
  6. 6.
    Norian, L. A., Rodriguez, P. C., O’Mara, L. A., Zabaleta, J., Ochoa, A. C., Cella, M., and Allen, P. M. (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res 69, 3086–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Schechter, G. P., Wahl, L. M., and Oppenheim, J. J. (1979) Suppressor monocytes in human disease: a review. Adv Exp Med Biol 121B, 283–98.PubMedGoogle Scholar
  8. 8.
    Elgert, K. D., Alleva, D. G., and Mullins, D. W. (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64, 275–90.PubMedGoogle Scholar
  9. 9.
    Bronte, V., and Zanovello, P. (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5, 641–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Gabrilovich, D. I., and Nagaraj, S. (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., and Lo-Man, R. (2009) Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31, 761–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Blois, S. M., Ilarregui, J. M., Tometten, M., Garcia, M., Orsal, A. S., Cordo-Russo, R., Toscano, M. A., Bianco, G. A., Kobelt, P., Handjiski, B., Tirado, I., Markert, U. R., Klapp, B. F., Poirier, F., Szekeres-Bartho, J., Rabinovich, G. A., and Arck, P. C. (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13, 1450–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Bogdan, C., Vodovotz, Y., and Nathan, C. (1991) Macrophage deactivation by IL-10. J Exp Med 174, 1549–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Mosser, D. M., and Zhang, X. (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226, 205–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Bogdan, C., and Nathan, C. (1993) Modulation of macrophage function by transforming growth factor-β, interleukin 4 and interleukin 10. Ann N Y Acad Sci 685, 713–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., Gilbert, J., and Ochoa, A. C. (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202, 931–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Serhan, C. N., Chiang, N., and Van Dyke, T. E. (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8, 349–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F., Enjyoji, K., Linden, J., Oukka, M., Kuchroo, V. K., Strom, T. B., and Robson, S. C. (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204, 1257–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Romani, L., Fallarino, F., De Luca, A., Montagnoli, C., D’Angelo, C., Zelante, T., Vacca, C., Bistoni, F., Fioretti, M. C., Grohmann, U., Segal, B. H., and Puccetti, P. (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Song, R., Mahidhara, R. S., Zhou, Z., Hoffman, R. A., Seol, D. W., Flavell, R. A., Billiar, T. R., Otterbein, L. E., and Choi, A. M. (2004) Carbon monoxide inhibits T lymphocyte proliferation via caspase-dependent pathway. J Immunol 172, 1220–6.PubMedGoogle Scholar
  21. 21.
    Munder, M. (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158, 638–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Bogdan, C. (2000) The function of nitric oxide in the immune system, in Handbook of experimental pharmacology. Volume: nitric oxide (Mayer, B., Ed.) pp 443–92, Springer, Heidelberg.CrossRefGoogle Scholar
  23. 23.
    Bogdan, C. (2001) Nitric oxide and the immune response. Nat Immunol 2, 907–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, C., and Liu, C. P. (2009) Regulatory function of a novel population of mouse autoantigen-specific Foxp3 regulatory T cells depends on IFN-gamma, NO, and contact with target cells. PLoS One 4, e7863.PubMedCrossRefGoogle Scholar
  25. 25.
    Bogdan, C. (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11, 66–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Fang, F. C. (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Immunol 2, 820–32.CrossRefGoogle Scholar
  27. 27.
    Bogdan, C. (2004) Reactive oxygen and reactive nitrogen metabolites as effector molecules against infectious pathogens, in The innate immune response to infection (Kaufmann, S. H. E., Medzhitov, R., and Gordon, S., Eds.) pp 357–96, ASM Press, Washington, DC.Google Scholar
  28. 28.
    Bogdan, C. (2009) Regulation and antimicrobial function of inducible nitric oxide synthase in macrophages, in Phagocyte–pathogen interaction (Russell, D. and Gordon, S., Eds.) pp 367–78, ASM Press, Washington.Google Scholar
  29. 29.
    Stuehr, D. J., Tejero, J., and Haque, M. M. (2009) Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 276, 3959–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–64.PubMedGoogle Scholar
  31. 31.
    Li, H., and Forstermann, U. (2009) Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des 15, 3133–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Forstermann, U., and Munzel, T. (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhou, L., and Zhu, D. Y. (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20, 223–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Durand, J. L., Mukherjee, S., Commodari, F., De Souza, A. P., Zhao, D., Machado, F. S., Tanowitz, H. B., and Jelicks, L. A. (2009) Role of NO synthase in the development of Trypanosoma cruzi-induced cardiomyopathy in mice. Am J Trop Med Hyg 80, 782–7.PubMedGoogle Scholar
  35. 35.
    Cui, X., Besch, V., Khaibullina, A., Hergen, A., Quezado, M., Eichacker, P., and Quezado, Z. M. (2007) Neuronal nitric oxide synthase deficiency decreases survival in bacterial peritonitis and sepsis. Intensive Care Med 33, 1993–2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Kajiya, K., Huggenberger, R., Drinnenberg, I., Ma, B., and Detmar, M. (2008) Nitric oxide mediates lymphatic vessel activation via soluble guanylate cyclase alpha1beta1-impact on inflammation. FASEB J 22, 530–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Nathan, C. (1997) Inducible nitric oxide synthase: what difference does it make? J Clin Invest 100, 2417–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q. W., and Nathan, C. (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor-β. J Exp Med 178, 605–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitani, T., Terashima, M., Yoshimura, H., Nariai, Y., and Tanigawa, Y. (2005) TGF-beta1 enhances degradation of IFN-gamma-induced iNOS protein via proteasomes in RAW 264.7 cells. Nitric Oxide 13, 78–87.PubMedCrossRefGoogle Scholar
  40. 40.
    Takaki, H., Minoda, Y., Koga, K., Takaesu, G., Yoshimura, A., and Kobayashi, T. (2006) TGF-beta1 suppresses IFN-gamma-induced NO production in macrophages by suppressing STAT1 activation and accelerating iNOS protein degradation. Genes Cells 11, 871–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Chen, L., Kong, X., Fu, J., Xu, Y., Fang, S., Hua, P., Luo, L., and Yin, Z. (2009) CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell Immunol 258, 38–43.PubMedCrossRefGoogle Scholar
  42. 42.
    El-Gayar, S., Thüring-Nahler, H., Pfeilschifter, J., Röllinghoff, M., and Bogdan, C. (2003) Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunol 171, 4561–8.PubMedGoogle Scholar
  43. 43.
    König, T., Bogdan, C., and Schleicher, U. (2009) Translational repression of inducible NO synthase in macrophages by l-arginine depletion is not associated with an increased phosphorylation of eIF2alpha. Immunobiology 214, 822–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Schneider, E., and Dy, M. (1985) The role of arginase in the immune response. Immunol Today 6, 136–9.CrossRefGoogle Scholar
  45. 45.
    Rutschman, R., Lang, R., Hesse, M., Ihle, J. N., Wynn, T. A., and Murray, P. J. (2001) Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 166, 2173–7.PubMedGoogle Scholar
  46. 46.
    El Kasmi, K. C., Qualls, J. E., Pesce, J. T., Smith, A. M., Thompson, R. W., Henao-Tamayo, M., Basaraba, R. J., Konig, T., Schleicher, U., Koo, M. S., Kaplan, G., Fitzgerald, K. A., Tuomanen, E. I., Orme, I. M., Kanneganti, T. D., Bogdan, C., Wynn, T. A., and Murray, P. J. (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9, 1399–406.PubMedCrossRefGoogle Scholar
  47. 47.
    Morris, S. M., Jr. (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157, 922–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Kuroda, E., Ho, V., Ruschmann, J., Antignano, F., Hamilton, M., Rauh, M. J., Antov, A., Flavell, R. A., Sly, L. M., and Krystal, G. (2009) SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils. J Immunol 183, 3652–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Bogdan, C. (1998) The multiplex function of nitric oxide in (auto)immunity. J Exp Med 187, 1361–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Stenger, S., Donhauser, N., Thüring, H., Röllinghoff, M., and Bogdan, C. (1996) Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med 183, 1501–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Lu, L., Bonham, C. A., Chambers, F. G., Watkins, S. C., Hoffman, R. A., Simmons, R. L., and Thomson, A. W. (1996) Induction of nitric oxide synthase in mouse dendritic cells by IFN-γ, endotoxin, and interaction with allogeneic T cells. Nitric oxide production is associated with dendritic cell apoptosis. J Immunol 157, 3577–86.PubMedGoogle Scholar
  52. 52.
    Eriksson, S., Chambers, B. J., and Rhen, M. (2003) Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium. Scand J Immunol 58, 493–502.PubMedCrossRefGoogle Scholar
  53. 53.
    Serbina, N. V., Kuziel, W., Flavell, R., Akira, S., Rollins, B., and Pamer, E. G. (2003) Sequential MyD88-independent and - dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19, 891–901.PubMedCrossRefGoogle Scholar
  54. 54.
    Tam, M. A., and Wick, M. J. (2006) Differential expansion, activation and effector functions of conventional and plasmacytoid dendritic cells in mouse tissues transiently infected with Listeria monocytogenes. Cell Microbiol 8, 1172–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Angulo, I., Rodriguez, R., Garcia, B., Medina, M., Navarro, J., and Subiza, J. L. (1995) Involvement of nitric oxide in bone marrow-derived natural suppressor activity. Its dependence on IFN-gamma. J Immunol 155, 15–26.PubMedGoogle Scholar
  56. 56.
    Angulo, I., de las Heras, F. G., Garcia-Bustos, J. F., Gargallo, D., Munoz-Fernandez, M. A., and Fresno, M. (2000) Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95, 212–20.PubMedGoogle Scholar
  57. 57.
    Pelaez, B., Campillo, J. A., Lopez-Asenjo, J. A., and Subiza, J. L. (2001) Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J Immunol 166, 6608–15.PubMedGoogle Scholar
  58. 58.
    Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149, 2736–41.PubMedGoogle Scholar
  59. 59.
    Gilchrist, M., Savoie, M., Nohara, O., Wills, F. L., Wallace, J. L., and Befus, A. D. (2002) Nitric oxide synthase and nitric oxide production in in vivo-derived mast cells. J Leukoc Biol 71, 618–24.PubMedGoogle Scholar
  60. 60.
    Amrouni, D., Gautier-Sauvigne, S., Meiller, A., Vincendeau, P., Bouteille, B., Buguet, A., and Cespuglio, R. (2010) Cerebral and peripheral changes occurring in nitric oxide (NO) synthesis in a rat model of sleeping sickness: identification of brain iNOS expressing cells. PLoS One 5, e9211.PubMedCrossRefGoogle Scholar
  61. 61.
    Thüring, H., Stenger, S., Gmehling, D., Röllinghoff, M., and Bogdan, C. (1995) Lack of inducible nitric oxide synthase activity in T cell-clones and T lymphocytes from naive and Leishmania major-infected mice. Eur J Immunol 25, 3229–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Vig, M., Srivastava, S., Kandpal, U., Sade, H., Lewis, V., Sarin, A., George, A., Bal, V., Durdik, J. M., and Rath, S. (2004) Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J Clin Invest 113, 1734–42.PubMedGoogle Scholar
  63. 63.
    Kamimura, Y., Fujii, T., Kojima, H., Nagano, T., and Kawashima, K. (2003) Nitric oxide (NO) synthase mRNA expression and NO production via muscarinic acetylcholine receptor-mediated pathways in the CEM, human leukemic T-cell line. Life Sci 72, 2151–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Ibiza, S., Perez-Rodriguez, A., Ortega, A., Martinez-Ruiz, A., Barreiro, O., Garcia-Dominguez, C. A., Victor, V. M., Esplugues, J. V., Rojas, J. M., Sanchez-Madrid, F., and Serrador, J. M. (2008) Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc Natl Acad Sci U S A 105, 10507–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Ibiza, S., Victor, V. M., Bosca, I., Ortega, A., Urzainqui, A., O’Connor, J. E., Sanchez-Madrid, F., Esplugues, J. V., and Serrador, J. M. (2006) Endothelial nitric oxide synthase regulates T cell receptor signaling at the immunological synapse. Immunity 24, 753–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Niedbala, W., Wei, X.-Q., Piedrafita, D., Xu, D., and Liew, F. Y. (1999) Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur J Immunol 29, 2498–505.PubMedCrossRefGoogle Scholar
  67. 67.
    Niedbala, W., Wei, X.-q., Campbell, C., Thomson, D., Komai-Koma, M., and Liew, F. Y. (2002) Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP. Proc Natl Acad Sci U S A 99, 16186–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Niedbala, W., Cai, B., Liu, H., Pitman, N., Chang, L., and Liew, F. Y. (2007) Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc Natl Acad Sci U S A 104, 15478–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Feng, G., Gao, W., Strom, T. B., Oukka, M., Francis, R. S., Wood, K. J., and Bushell, A. (2008) Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3+ regulatory T cells. Eur J Immunol 38, 2512–27.PubMedCrossRefGoogle Scholar
  70. 70.
    Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M., and Chen, S. H. (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66, 1123–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Brahmachari, S., and Pahan, K. (2009) Suppression of regulatory T cells by IL-12p40 homodimer via nitric oxide. J Immunol 183, 2045–58.PubMedCrossRefGoogle Scholar
  72. 72.
    Brahmachari, S., and Pahan, K. (2010) Myelin basic protein priming reduces the expression of Foxp3 in T cells via nitric oxide. J Immunol 184, 1799–809.PubMedCrossRefGoogle Scholar
  73. 73.
    Hoffman, R. A., Langrehr, J. M., Billiar, T. R., Curran, R. D., and Simmons, R. L. (1990) Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of l-arginine. J. Immunol 145, 2220–6.PubMedGoogle Scholar
  74. 74.
    Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/Stat5 signaling pathway. J Immunol 160, 5729–34.PubMedGoogle Scholar
  75. 75.
    Macphail, S. E., Gibney, C. A., Brooks, B. M., Booth, C. G., Flanagan, B. F., and Coleman, J. W. (2003) Nitric oxide regulation of human peripheral blood mononuclear cells: critical time dependence and selectivity for cytokine versus chemokine expression. J Immunol 171, 4809–15.PubMedGoogle Scholar
  76. 76.
    Henson, S. E., Nichols, T. C., Holers, V. M., and Karp, D. R. (1999) The ectoenzyme γ-glutamyl transpeptidase regulates antiproliferative effects of S-nitrosoglutathione on human T and B lymphocytes. J Immunol 163, 1845–52.PubMedGoogle Scholar
  77. 77.
    Mahidhara, R. S., Hoffman, R. A., Huang, S., Wolf-Johnston, A., Vodovotz, Y., Simmons, R. L., and Billiar, T. R. (2003) Nitric oxide-mediated inhibition of caspase-dependent T lymphocyte proliferation. J Leukoc Biol 74, 403–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Greifenberg, V., Ribechini, E., Rossner, S., and Lutz, M. B. (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39, 2865–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Bronte, V., Serafini, P., de Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170, 270–8.PubMedGoogle Scholar
  80. 80.
    Rodriguez, P. C., Ernstoff, M. S., Hernandez, C., Atkins, M., Zabaleta, J., Sierra, R., and Ochoa, A. C. (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69, 1553–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Rodriguez, P. C., Quiceno, D. G., and Ochoa, A. C. (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E. A., Antonia, S., Ochoa, J. B., and Ochoa, A. C. (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T cell-receptor expression and antigen-specific T cell responses. Cancer Res 64, 5839–49.PubMedCrossRefGoogle Scholar
  83. 83.
    Zabaleta, J., McGee, D. J., Zea, A. H., Hernandez, C. P., Rodriguez, P. C., Sierra, R. A., Correa, P., and Ochoa, A. C. (2004) Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J Immunol 173, 586–93.PubMedGoogle Scholar
  84. 84.
    Modolell, M., Choi, B. S., Ryan, R. O., Hancock, M., Titus, R. G., Abebe, T., Hailu, A., Muller, I., Rogers, M. E., Bangham, C. R., Munder, M., and Kropf, P. (2009) Local suppression of T cell responses by arginase-induced l-arginine depletion in nonhealing leishmaniasis. PLoS Negl Trop Dis 3, e480.PubMedCrossRefGoogle Scholar
  85. 85.
    Munder, M., Choi, B. S., Rogers, M., and Kropf, P. (2009) l-arginine deprivation impairs Leishmania major-specific T-cell responses. Eur J Immunol 39, 2161–72.PubMedCrossRefGoogle Scholar
  86. 86.
    Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., Battistini, L., Iafrate, M., Prayer-Galetti, T., Pagano, F., and Viola, A. (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201, 1257–68.PubMedCrossRefGoogle Scholar
  87. 87.
    Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., Basso, G., Brombacher, F., Borrello, I., Zanovello, P., Bicciato, S., and Bronte, V. (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116, 2777–90.PubMedCrossRefGoogle Scholar
  88. 88.
    Rodriguez, P. C., Zea, A. H., Culotta, K. S., Zabaleta, J., Ochoa, J. B., and Ochoa, A. C. (2002) Regulation of T cell receptor CD3zeta chain expression by l-arginine. J Biol Chem 277, 21123–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Rodriguez, P. C., Zea, A. H., DeSalvo, J., Culotta, K. S., Zabaleta, J., Quiceno, D. G., Ochoa, J. B., and Ochoa, A. C. (2003) l-arginine consumption by macrophages modulates the expression of CD3ζ chain in T lymphocytes. J Immunol 17, 1232–9.Google Scholar
  90. 90.
    Zea, A. H., Culotta, K. S., Ali, J., Mason, C., Park, H. J., Zabaleta, J., Garcia, L. F., and Ochoa, A. C. (2006) Decreased expression of CD3zeta and nuclear transcription factor kappa B in patients with pulmonary tuberculosis: potential mechanisms and reversibility with treatment. J Infect Dis 194, 1385–93.PubMedCrossRefGoogle Scholar
  91. 91.
    Xia, Y., Roman, L. J., Masters, B. S. S., and Zweier, J. L. (1998) Inducible nitric oxide synthase generates superoxide from the reductase domain. J Biol Chem 273, 22635–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Gao, Y. T., Panda, S. P., Roman, L. J., Martasek, P., Ishimura, Y., and Masters, B. S. (2007) Oxygen metabolism by neuronal nitric-oxide synthase. J Biol Chem 282, 7921–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Gao, Y. T., Roman, L. J., Martasek, P., Panda, S. P., Ishimura, Y., and Masters, B. S. (2007) Oxygen metabolism by endothelial nitric-oxide synthase. J Biol Chem 282, 28557–65.PubMedCrossRefGoogle Scholar
  94. 94.
    Schmielau, J., and Finn, O. J. (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61, 4756–60.PubMedGoogle Scholar
  95. 95.
    Kusmartsev, S., Nefedova, Y., Yoder, D., and Gabrilovich, D. I. (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172, 989–99.PubMedGoogle Scholar
  96. 96.
    Brys, L., Beschin, A., Raes, G., Ghassabeh, G. H., Noel, W., Brandt, J., Brombacher, F., and De Baetselier, P. (2005) Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 174, 6095–104.PubMedGoogle Scholar
  97. 97.
    Hoffman, R. A., Mahidhara, R. S., Wolf-Johnston, A. S., Lu, L., Thomson, A. W., and Simmons, R. L. (2002) Differential modulation of CD4 and CD8 T-cell proliferation by induction of nitric oxide synthesis in antigen presenting cells. Transplantation 74, 836–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Langrehr, J. M., Dull, K. E., Ochoa, J. B., Billiar, T. R., Ildstad, S. T., Schraut, W. H., Simmons, R. L., and Hoffman, R. A. (1992) Evidence that nitric oxide production by in vivo allosensitized cells inhibits the development of allospecific CTL. Transplantation 53, 632–40.PubMedCrossRefGoogle Scholar
  99. 99.
    Medot-Pirenne, M., Heilman, M. J., Saxena, M., McDermott, P. E., and Mills, C. D. (1999) Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide. J Immunol 163, 5877–82.PubMedGoogle Scholar
  100. 100.
    Monsonego, A., Imitola, J., Zota, V., Oida, T., and Weiner, H. L. (2003) Microglia-mediated nitric oxide cytotoxicity of T cells following amyloid beta-peptide presentation to Th1 cells. J Immunol 171, 2216–24.PubMedGoogle Scholar
  101. 101.
    Eriksson, U., Egermann, U., Bihl, M. P., Gambazzi, F., Tamm, M., Holt, P. G., and Bingisser, R. M. (2005) Human bronchial epithelium controls TH2 responses by TH1-induced, nitric oxide-mediated STAT5 dephosphorylation: implications for the pathogenesis of asthma. J Immunol 175, 2715–20.PubMedGoogle Scholar
  102. 102.
    van der Veen, R. C., Dietlin, T. A., Pen, L., and Gray, J. D. (1999) Nitric oxide inhibits the proliferation of T-helper 1 and 2 lymphocytes without reduction in cytokine secretion. Cell Immunol 193, 194–201.PubMedCrossRefGoogle Scholar
  103. 103.
    Taylor-Robinson, A. W., Liew, F. Y., Severn, A., Xu, D., McScorley, S. J., Garside, P., Padron, J., and Phillips, R. S. (1994) Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol 24, 980–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Benbernou, N., Esnault, S., Shin, H. C., Fekkar, H., and Guenounou, M. (1997) Differential regulation of IFN-gamma, IL-10 and inducible nitric oxide synthase in human T cells by cyclic AMP-dependent signal transduction pathway. Immunology 91, 361–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Chang, R.-H., Lin Feng, M.-H., Liu, W.-H., and Lai, M.-Z. (1997) Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology 90, 364–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Fiorucci, S., Antonelli, E., Distrutti, E., Del Soldato, P., Flower, R. J., Clark, M. J., Morelli, A., Perretti, M., and Ignarro, L. J. (2002) NCX-1015, a nitric-oxide derivative of prednisolone, enhances regulatory T cells in the lamina propria and protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Proc Natl Acad Sci U S A 99, 15770–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Bauer, H., Jung, T., Tsikas, D., Stichtenoth, D. O., Fröhlich, J. C., and Neumann, C. (1997) Nitric oxide inhibits the secretion of T-helper 1- and T-helper 2-associated cytokines in activated human T cells. Immunology 90, 205–11.PubMedCrossRefGoogle Scholar
  108. 108.
    Marcinkiewicz, J., Grabowska, A., and Chain, B. M. (1996) Is there a role for nitric oxide in regulation of T cell secretion of IL-2? J Immunol 156, 4617–21.PubMedGoogle Scholar
  109. 109.
    Norman, M. U., Zbytnuik, L., and Kubes, P. (2008) Interferon-gamma limits Th1 lymphocyte adhesion to inflamed endothelium: a nitric oxide regulatory feedback mechanism. Eur J Immunol 38, 1368–80.PubMedCrossRefGoogle Scholar
  110. 110.
    Staykova, M. A., Berven, L. A., Cowden, W. B., Willenborg, D. O., and Crouch, M. F. (2003) Nitric oxide induces polarization of actin in encephalitogenic T cells and inhibits their in vitro trans-endothelial migration in a p70S6 kinase-independent manner. FASEB J 17, 1337–9.PubMedGoogle Scholar
  111. 111.
    Barreiro Arcos, M. L., Gorelik, G., Klecha, A., Goren, N., Cerquetti, C., and Cremaschi, G. A. (2003) Inducible nitric oxide synthase-mediated proliferation of a T lymphoma cell line. Nitric Oxide 8, 111–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Barreiro Arcos, M. L., Gorelik, G., Klecha, A., Genaro, A. M., and Cremaschi, G. A. (2006) Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes. Am J Physiol Cell Physiol 291, C327–36.PubMedCrossRefGoogle Scholar
  113. 113.
    Choy, J. C., Wang, Y., Tellides, G., and Pober, J. S. (2007) Induction of inducible NO synthase in bystander human T cells increases allogeneic responses in the vasculature. Proc Natl Acad Sci U S A 104, 1313–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Choy, J. C., and Pober, J. S. (2009) Generation of NO by bystander human CD8 T cells augments allogeneic responses by inhibiting cytokine deprivation-induced cell death. Am J Transplant 9, 2281–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Williams, M. S., Noguchi, S., Henkart, P. S., and Osawa, Y. (1998) Nitric oxide synthase plays a signalling role in TCR-triggered apoptotic death. J Immunol 161, 6526–31.PubMedGoogle Scholar
  116. 116.
    Reiling, N., Kröncke, R., Ulmer, A. J., Gerdes, J., Flad, H.-D., and Hauschildt, S. (1996) Nitric oxide synthase: expression of the endothelial, Ca2+/calmodulin-dependent isoform in human B and T lymphocytes. Eur J Immunol 26, 511–16.PubMedCrossRefGoogle Scholar
  117. 117.
    Nagy, G., Koncz, A., and Perl, A. (2003) T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J Immunol 171, 5188–97.PubMedGoogle Scholar
  118. 118.
    Sciorati, C., Rovere, P., Ferrarini, M., Heltai, S., Manfredi, A. A., and Clementi, E. (1997) Autocrine nitric oxide modulates CD95-induced apoptosis in γδ T lymphocytes. J Biol Chem 272, 23211–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Degli-Esposti, M. A., and Smyth, M. J. (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5, 112–24.PubMedCrossRefGoogle Scholar
  120. 120.
    Lucas, M., Schachterle, W., Oberle, K., Aichele, P., and Diefenbach, A. (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin-15. Immunity 26, 1–15.CrossRefGoogle Scholar
  121. 121.
    Schleicher, U., Liese, J., Knippertz, I., Kurzmann, C., Hesse, A., Heit, A., Fischer, J. A., Weiss, S., Kalinke, U., Kunz, S., and Bogdan, C. (2007) NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 204, 893–906.PubMedCrossRefGoogle Scholar
  122. 122.
    Diefenbach, A., Schindler, H., Röllinghoff, M., Yokoyama, W., and Bogdan, C. (1999) Requirement for type 2 NO-synthase for IL-12 responsiveness in innate immunity. Science 284, 951–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Cifone, M. G., D’Alo, S., Parroni, R., Millimaggi, D., Biordi, L., Martinotti, S., and Santoni, A. (1999) Interleukin-2 activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-γ production. Blood 93, 3876–84.PubMedGoogle Scholar
  124. 124.
    Salvucci, O., Kolb, J. P., Dugas, B., Dugas, N., and Chouaib, S. (1998) The induction of nitric oxide by interleukin-12 and tumor necrosis factor-alpha in human natural killer cells: relationship with the regulation of lytic activity. Blood 92, 2093–102.PubMedGoogle Scholar
  125. 125.
    Furuke, K., Burd, P. R., Horvath-Arcidiacono, J. A., Hori, K., Mostowski, H., and Bloom, E. T. (1999) Human NK cells express endothelial nitric oxide synthase, and nitric oxide protects them from activation-induced cell death by regulating expression of TNF-α. J Immunol 163, 1473–1480.PubMedGoogle Scholar
  126. 126.
    Diefenbach, A., Schindler, H., Donhauser, N., Lorenz, E., Laskay, T., MacMicking, J., Röllinghoff, M., Gresser, I., and Bogdan, C. (1998) Type 1 interferon (IFN-α/β) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity 8, 77–87.PubMedCrossRefGoogle Scholar
  127. 127.
    Burnett, T. G., and Hunt, J. S. (2000) Nitric oxide synthase-2 and expression of perforin in uterine NK cells. J Immunol 164, 5245–50.PubMedGoogle Scholar
  128. 128.
    Bogdan, C., Röllinghoff, M., and Diefenbach, A. (2000) The role of nitric oxide in innate immunity. Immunol Rev 173, 17–26.PubMedCrossRefGoogle Scholar
  129. 129.
    Cifone, M. G., Ulisse, S., and Santoni, A. (2001) Natural killer cells and nitric oxide. Int Immunopharmacol 1, 1513–24.PubMedCrossRefGoogle Scholar
  130. 130.
    Kurose, I., Miura, S., Saito, H., Tada, S., Fukumura, D., Higuchi, H., and Ishii, H. (1995) Rat Kupffer cell-derived nitric oxide modulates induction of lymphokine-activated killer cell. Gastroenterology 109, 1958–68.PubMedCrossRefGoogle Scholar
  131. 131.
    Ferlito, M., Irani, K., Faraday, N., and Lowenstein, C. J. (2006) Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells. Proc Natl Acad Sci U S A 103, 11689–94.PubMedCrossRefGoogle Scholar
  132. 132.
    Jayasekera, J. P., Vinuesa, C. G., Karupiah, G., and King, N. J. (2006) Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J Gen Virol 87, 3361–71.PubMedCrossRefGoogle Scholar
  133. 133.
    Tezuka, H., Abe, Y., Iwata, M., Takeuchi, H., Ishikawa, H., Matsushita, M., Shiohara, T., Akira, S., and Ohteki, T. (2007) Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–33.PubMedCrossRefGoogle Scholar
  134. 134.
    Lechner, M., Lirk, P., and Rieder, J. (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15, 277–89.PubMedCrossRefGoogle Scholar
  135. 135.
    Singh, R., Pervin, S., Karimi, A., Cederbaum, S., and Chaudhuri, G. (2000) Arginase activity in human breast cancer cell lines: Nω-hydroxy-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res 60, 3305–12.PubMedGoogle Scholar
  136. 136.
    Pamer, E. G. (2009) Tipping the balance in favor of protective immunity during influenza virus infection. Proc Natl Acad Sci U S A 106, 4961–2.PubMedCrossRefGoogle Scholar
  137. 137.
    Dalton, D. K., and Wittmer, S. (2005) Nitric-oxide-dependent and independent mechanisms of protection from CNS inflammation during Th1-mediated autoimmunity: evidence from EAE in iNOS KO mice. J Neuroimmunol 160, 110–21.PubMedCrossRefGoogle Scholar
  138. 138.
    Hauser, B., Bracht, H., Matejovic, M., Radermacher, P., and Venkatesh, B. (2005) Nitric oxide synthase inhibition in sepsis? Lessons learned from large-animal studies. Anesth Analg 101, 488–98.PubMedCrossRefGoogle Scholar
  139. 139.
    Su, F., Huang, H., Kazuki, A., Occhipinti, G., Donadello, K., Piagnerelli, M., De Backer, D., and Vincent, J. L. (2010) Effects of a selective iNOS inhibitor versus norepinephrine in the treatment of septic shock. Shock. Feb 10. [Epub ahead of print].Google Scholar
  140. 140.
    Heemskerk, S., Masereeuw, R., Russel, F. G., and Pickkers, P. (2009) Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat Rev Nephrol 5, 629–40.PubMedCrossRefGoogle Scholar
  141. 141.
    Lamontagne, F., Meade, M., Ondiveeran, H. K., Lesur, O., and Robichaud, A. E. (2008) Nitric oxide donors in sepsis: a systematic review of clinical and in vivo preclinical data. Shock 30, 653–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Valdez, C. A., Saavedra, J. E., Showalter, B. M., Davies, K. M., Wilde, T. C., Citro, M. L., Barchi, J. J., Jr., Deschamps, J. R., Parrish, D., El-Gayar, S., Schleicher, U., Bogdan, C., and Keefer, L. K. (2008) Hydrolytic reactivity trends among potential prodrugs of the O(2)-glycosylated diazeniumdiolate family targeting nitric oxide to macrophages for antileishmanial activity. J Med Chem 51, 3961–70.PubMedCrossRefGoogle Scholar
  143. 143.
    Singh, R., Manjunatha, U., Boshoff, H. I., Ha, Y. H., Niyomrattanakit, P., Ledwidge, R., Dowd, C. S., Lee, I. Y., Kim, P., Zhang, L., Kang, S., Keller, T. H., Jiricek, J., and Barry, C. E., 3rd. (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322, 1392–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Deignan, J. L., Livesay, J. C., Yoo, P. K., Goodman, S. I., O’Brien, W. E., Iyer, R. K., Cederbaum, S. D., and Grody, W. W. (2006) Ornithine deficiency in the arginase double knockout mouse. Mol Genet Metab 89, 87–96.PubMedCrossRefGoogle Scholar
  145. 145.
    Boucher, J. L., Moali, C., and Tenu, J.-P. (1999) Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for l-arginine utilization. Cell Mol Life Sci 55, 1015–28.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Christian Bogdan
    • 1
  1. 1.Medical Microbiology and Immunology of Infectious Diseases, Microbiology Institute – Clinical Microbiology, Immunology and HygieneFriedrich-Alexander-University Erlangen-Nuremberg and University Clinic of ErlangenErlangenGermany

Personalised recommendations