Regulatory T Cell Enrichment by IFN-γ Conditioning

  • Gang Feng
  • Kathryn J. Wood
  • Andrew BushellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 677)


IFN-γ was originally characterized as a proinflammatory cytokine with T helper type 1 inducing activity, but it is now clear that it also has important immunoregulatory functions. Regulatory T cells play an important role in models of autoimmunity, GVHD, and transplantation, and offer potential as a cellular therapy. In rodent models, in vivo-generated CD25+CD4+ T cells can prevent allograft rejection, but therapeutic exploitation of Treg will more likely depend on protocols that allow the generation or selection of Treg ex vivo. The experiments described in this chapter will show that alloantigen-reactive Treg can be generated/expanded ex vivo using IFN-γ, a cytokine more usually associated with allograft rejection. Although IFN-γ production has hitherto been generally regarded as nonpermissive for allograft survival, we believe this paradoxical “good–bad” role for IFN-γ may reflect an important physiological negative feedback loop.

Key words

IFN-γ Regulatory T cell Transplantation 



This work was supported by The Wellcome Trust and British Heart Foundation. G. F. received a Dorothy Hodgkin Postgraduate Award and support from The China-Oxford Scholarship Fund. K. J. W. holds a Royal Society Wolfson Research Merit Award.


  1. 1.
    Weaver, C.T., Hatton, R.D., Mangan, P.R. and Harrington, L.E. (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol., 25, 821–852.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferber, I., Brocke, S., Taylor-Edwards, C., Ridgway, W., Dinisco, C., Steinman, L., Dalton, D. and Fathman, C. (1996) Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol., 156, 5–7.PubMedGoogle Scholar
  3. 3.
    Chu, C.-Q., Wittmer, S. and Dalton, D.K. (2000) Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med., 192, 123–128.PubMedCrossRefGoogle Scholar
  4. 4.
    Willenborg, D.O., Fordham, S.A., Staykova, M.A., Ramshaw, I.A. and Cowden, W.B. (1999) IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol., 163, 5278–5286.PubMedGoogle Scholar
  5. 5.
    Manoury-Schwartz, B., Chiocchia, G., Bessis, N., Abehsira-Amar, O., Batteux, F., Muller, S., Huang, S., Boissier, M.C. and Fournier, C. (1997) High susceptibility to collagen-induced arthritis in mice lacking IFN-γ receptors. J. Immunol., 158, 5501–5506.PubMedGoogle Scholar
  6. 6.
    Vermeire, K., Heremans, H., Vandeputte, M., Huang, S., Billiau, A. and Matthys, P. (1997) Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J. Immunol., 158, 5507–5513.PubMedGoogle Scholar
  7. 7.
    Ortmann, R.A. and Shevach, E.M. (2001) Susceptibility to collagen-induced arthritis: cytokine-mediated regulation. Clin. Immunol., 98, 109–118.PubMedCrossRefGoogle Scholar
  8. 8.
    Brem-Exner, B.G., Sattler, C., Hutchinson, J.A., Koehl, G.E., Kronenberg, K., Farkas, S., Inoue, S., Blank, C., Knechtle, S.J., Schlitt, H.J. et al. (2008) Macrophages driven to a novel state of activation have anti-inflammatory properties in mice. J. Immunol., 180, 335–349.PubMedGoogle Scholar
  9. 9.
    Boehm, U., Klamp, T., Groot, M. and Howard, J.C. (1997) Cellular responses to interferon-gamma. Annu. Rev. Immunol., 15, 749–795.PubMedCrossRefGoogle Scholar
  10. 10.
    O’Garra, A. (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity, 8, 275–283.PubMedCrossRefGoogle Scholar
  11. 11.
    Gajewski, T. and Fitch, F. (1988) Anti-proliferative effect of IFN-γ in immune regulation. I. IFN- gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J. Immunol., 140, 4245–4252.PubMedGoogle Scholar
  12. 12.
    Park, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.H., Wang, Y., Hood, L., Zhu, Z., Tian, Q. et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol., 6, 1133–1141.PubMedCrossRefGoogle Scholar
  13. 13.
    Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M. and Weaver, C.T. (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 6, 1123–1132.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, Y. and Janeway, C., Jr. (1990) Interferon gamma plays a critical role in induced cell death of effector T cell: a possible third mechanism of self-tolerance. J. Exp. Med., 172, 1735–1739.PubMedCrossRefGoogle Scholar
  15. 15.
    Dalton, D.K., Haynes, L., Chu, C.-Q., Swain, S.L. and Wittmer, S. (2000) Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med., 192, 117–122.PubMedCrossRefGoogle Scholar
  16. 16.
    Refaeli, Y., Van Parijs, L., Alexander, S.I. and Abbas, A.K. (2002) Interferon gamma is required for activation-induced death of T lymphocytes. J. Exp. Med., 196, 999–1005.PubMedCrossRefGoogle Scholar
  17. 17.
    Feuerer, M., Eulenburg, K., Loddenkemper, C., Hamann, A. and Huehn, J. (2006) Self-limitation of Th1-mediated inflammation by IFN-γ. J. Immunol., 176, 2857–2863.PubMedGoogle Scholar
  18. 18.
    Berner, V., Liu, H., Zhou, Q., Alderson, K.L., Sun, K., Weiss, J.M., Back, T.C., Longo, D.L., Blazar, B.R., Wiltrout, R.H. et al. (2007) IFN-γ mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nat. Med., 13, 354–360.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, X., McKinstry, K.K., Swain, S.L. and Dalton, D.K. (2007) IFN-γ acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J. Immunol., 179, 939–949.PubMedGoogle Scholar
  20. 20.
    Sawitzki, B., Kingsley, C.I., Oliveira, V., Karim, M., Herber, M. and Wood, K.J. (2005) IFN-γ production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J. Exp. Med., 201, 1925–1935.PubMedCrossRefGoogle Scholar
  21. 21.
    Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P., Belladonna, M.L., Bianchi, R., Fioretti, M.C. et al. (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol., 3, 1097–1101.PubMedCrossRefGoogle Scholar
  22. 22.
    Finger, E.B. and Bluestone, J.A. (2002) When ligand becomes receptor – tolerance via B7 signaling on DCs. Nat. Immunol., 3, 1056–1057.PubMedCrossRefGoogle Scholar
  23. 23.
    Mellor, A.L. and Munn, D.H. (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol., 4, 762–774.PubMedCrossRefGoogle Scholar
  24. 24.
    Markees, T.G., Phillips, N.E., Gordon, E.J., Noelle, R.J., Shultz, L.D., Mordes, J.P., Greiner, D.L. and Rossini, A.A. (1998) Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4+ T cells, interferon-γ, and CTLA4. J. Clin. Invest., 101, 2446–2455.PubMedCrossRefGoogle Scholar
  25. 25.
    Fairchild, R.L. (2003) The Yin and Yang of IFN-γ in allograft rejection. Am. J. Transplant., 3, 913–914.PubMedCrossRefGoogle Scholar
  26. 26.
    Wood, K.J. and Sawitzki, B. (2006) Interferon γ: a crucial role in the function of induced regulatory T cells in vivo. Trends Immunol., 27, 183–187.PubMedCrossRefGoogle Scholar
  27. 27.
    Bugeon, L., Cuturi, M.C., Hallet, M.M., Paineau, J., Chabannes, D. and Soulillou, J.P. (1992) Peripheral tolerance of an allograft in adult rats-characterization by low interleukin-2 and interferon-γ mRNA levels and by strong accumulation of major histocompatibility complex transcripts in the graft. Transplantation, 54, 219–225.PubMedCrossRefGoogle Scholar
  28. 28.
    Nickerson, P., Steiger, J., Zheng, X.X., Steele, A.W., Steurer, W., Roy-Chaudhury, P. and Strom, T.B. (1997) Manipulation of cytokine networks in transplantation: false hope or realistic opportunity for tolerance? Transplantation, 63, 489–494.PubMedCrossRefGoogle Scholar
  29. 29.
    Saleem, S., Konieczny, B.T., Lowry, R.P., Baddoura, F.K. and Lakkis, F.G. (1996) Acute rejection of vascularized heart allografts in the absence of IFN-γ. Transplantation, 62, 1908–1911.PubMedCrossRefGoogle Scholar
  30. 30.
    Bishop, D.K., Wood, S.C., Eichwald, E.J. and Orosz, C.G. (2001) Immunobiology of allograft rejection in the absence of IFN-γ: CD8+ effector cells develop independently of CD4+ cells and CD40–CD40 ligand interactions. J. Immunol., 166, 3248–3255.PubMedGoogle Scholar
  31. 31.
    Konieczny, B.T., Dai, Z., Elwood, E.T., Saleem, S., Linsley, P.S., Baddoura, F.K., Larsen, C.P., Pearson, T.C. and Lakkis, F.G. (1998) IFN-γ is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. J. Immunol., 160, 2059–2064.PubMedGoogle Scholar
  32. 32.
    Guillonneau, C., Hill, M., Hubert, F.-X., Chiffoleau, E., Herve, C., Li, X.-L., Heslan, M., Usal, C., Tesson, L., Menoret, S. et al. (2007) CD40Ig treatment results in allograft acceptance mediated by CD8+CD45RClow T cells, IFN-γ, and indoleamine 2,3-dioxygenase. J. Clin. Invest., 117, 1096–1106.PubMedCrossRefGoogle Scholar
  33. 33.
    Qin, S., Wise, M., Cobbold, S., Leong, L., Kong, Y., Parnes, J. and Waldmann, H. (1990) Induction of tolerance in peripheral T cells with monoclonal antibodies. Eur. J. Immunol., 20, 2737–2745.PubMedCrossRefGoogle Scholar
  34. 34.
    Bhattacharya, A., Dorf, M. and Springer, T. (1981) A shared alloantigenic determinant on Ia antigens encoded by the I-A and I-E subregions: evidence for I region gene duplication. J. Immunol., 127, 2488–2495.PubMedGoogle Scholar
  35. 35.
    Springer, T., Galfre, G., Secher, D.S. and Milstein, C. (1978) Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur. J. Immunol., 8, 539–551.PubMedCrossRefGoogle Scholar
  36. 36.
    Asensi, V., Kimeno, K., Kawamura, I., Sakumoto, M. and Nomoto, K. (1989) Treatment of autoimmune MRL/lpr mice with anti-B220 monoclonal antibody reduces the level of anti-DNA antibodies and lymphadenopathies. Immunology, 68, 204–208.PubMedGoogle Scholar
  37. 37.
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S. and Steinman, R.M. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med., 176, 1693–1702.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamaguchi, Y., Tsumura, H., Miwa, M. and Inaba, K. (1997) Contrasting effects of TGF-β1 and TNF-α on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells, 15, 144–153.PubMedCrossRefGoogle Scholar
  39. 39.
    Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 4, 330–336.PubMedCrossRefGoogle Scholar
  40. 40.
    Hori, S., Nomura, T. and Sakaguchi, S. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science, 299, 1057–1061.PubMedCrossRefGoogle Scholar
  41. 41.
    Khattri, R., Cox, T., Yasayko, S.-A. and Ramsdell, F. (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol., 4, 337–342.PubMedCrossRefGoogle Scholar
  42. 42.
    Hsieh, C., Macatonia, S., O’Garra, A. and Murphy, K. (1995) T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med., 181, 713–721.PubMedCrossRefGoogle Scholar
  43. 43.
    Jonuleit, H., Schmitt, E., Steinbrink, K. and Enk, A.H. (2001) Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol., 22, 394–400.PubMedCrossRefGoogle Scholar
  44. 44.
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L. and Kuchroo, V.K. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235–238.PubMedCrossRefGoogle Scholar
  45. 45.
    Kretschmer, K., Apostolou, I., Hawiger, D., Khazaie, K., Nussenzweig, M.C. and von Boehmer, H. (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol., 6, 1219–1227.PubMedCrossRefGoogle Scholar
  46. 46.
    Ohmori, H. and Yamamoto, I. (1982) Mechanism of augmentation of the antibody response in vitro by 2- mercaptoethanol in murine lymphocytes. I. 2-Mercaptoethanol-induced stimulation of the uptake of cystine, an essential amino acid. J. Exp. Med., 155, 1277–1290.PubMedCrossRefGoogle Scholar
  47. 47.
    Zmuda, J. and Friedenson, B. (1983) Changes in intracellular glutathione levels in stimulated and unstimulated lymphocytes in the presence of 2-mercaptoethanol or cysteine. J. Immunol., 130, 362–364.PubMedGoogle Scholar
  48. 48.
    Pruett, S.B., Obiri, N. and Kiel, J.L. (1989) Involvement and relative importance of at least two distinct mechanisms in the effects of 2-mercaptoethanol on murine lymphocytes in culture. J. Cell. Physiol., 141, 40–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Duhe, R.J., Evans, G.A., Erwin, R.A., Kirken, R.A., Cox, G.W. and Farrar, W.L. (1998) Nitric oxide and thiol redox regulation of Janus kinase activity. Proc. Natl. Acad. Sci. U. S. A., 95, 126–131.PubMedCrossRefGoogle Scholar
  50. 50.
    Bevan, M.J., Epstein, R. and Cohn, M. (1974) The effect of 2-mercaptoethanol on murine mixed lymphocyte culture. J. Exp. Med., 139, 1025–1030.PubMedCrossRefGoogle Scholar
  51. 51.
    Goodman, M. and Weigle, W. (1977) Nonspecific activation of murine lymphocytes. I. Proliferation and polyclonal activation induced by 2-mercaptoethanol and alpha- thioglycerol. J. Exp. Med., 145, 473–489.PubMedCrossRefGoogle Scholar
  52. 52.
    Feng, G., Gao, W., Strom, T.B., Oukka, M., Francis, R.S., Wood, K.J. and Bushell, A. (2008) Exogenous IFN-γ ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3+ regulatory T cells. Eur. J. Immunol., 38, 2512–2527.PubMedCrossRefGoogle Scholar
  53. 53.
    Lipoldova, M. and Demant, P. (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat. Rev. Genet., 7, 294–305.PubMedCrossRefGoogle Scholar
  54. 54.
    Williams, M.A., Trambley, J., Ha, J., Adams, A.B., Durham, M.M., Rees, P., Cowan, S.R., Pearson, T.C. and Larsen, C.P. (2000) Genetic characterization of strain differences in the ability to mediate CD40/CD28-independent rejection of skin allografts. J. Immunol., 165, 6849–6857.PubMedGoogle Scholar
  55. 55.
    Himmelrich, H., Parra-Lopez, C., Tacchini-Cottier, F., Louis, J.A. and Launois, P. (1998) The IL-4 rapidly produced in BALB/c mice after infection with Leishmania major down-regulates IL-12 receptor beta2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J. Immunol., 161, 6156–6163.PubMedGoogle Scholar
  56. 56.
    Yagi, R., Suzuki, W., Seki, N., Kohyama, M., Inoue, T., Arai, T. and Kubo, M. (2002) The IL-4 production capability of different strains of naive CD4+ T cells controls the direction of the Th cell response. Int. Immunol., 14, 1–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Noben-Trauth, N., Hu-Li, J. and Paul, W.E. (2000) Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J. Immunol., 165, 3620–3625.PubMedGoogle Scholar
  58. 58.
    Feng, G., Wood, K.J. and Bushell, A. (2008) IFN-γ conditioning ex-vivo generates CD25+CD62L+ Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation, 86, 578–589.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  1. 1.Transplantation Research Immunology Group, Nuffield Department of Surgery, John Radcliffe HospitalUniversity of OxfordOxfordUK

Personalised recommendations