Immunoregulatory Properties of Heme Oxygenase-1

  • Philippe BlancouEmail author
  • Virginie Tardif
  • Thomas Simon
  • Séverine Rémy
  • Leandro Carreño
  • Alexis Kalergis
  • Ignacio Anegon
Part of the Methods in Molecular Biology book series (MIMB, volume 677)


Heme oxygenase-1 (HO-1) is one of the three isoforms of the heme oxygenase enzyme that catabolyzes the degradation of heme into biliverdin with the production of free iron and CO. HO-1 is induced by its substrate and by other stimuli, including agents involved in oxidative stress and proinflammatory cytokines as well as several anti-inflammatory stimuli. A growing body of evidence points toward the capacity of this molecule to inhibit immune reactions and the pivotal role of HO-1 in inflammatory diseases. We will first review the physiological role of HO-1 as determined by the analysis of HO-1-deficient individuals. This will be followed by an examination of the effect of HO-1 within immunopathological contexts such as immune disorders (autoimmunity and allergy) or infections. A section will be devoted to the use of an HO-1 inducer as an immunosuppressive molecule in transplantation. Finally, we will review the molecular basis of HO-1 actions on different immune cells.

Key words

Heme oxygenase Carbon monoxide Inflammation Autoimmunity Allergy Infection Transplantation Dendritic cell Lymphocyte Macrophage 



This work was supported by funding from, La Région Pays de la Loire through the “Chaire d’excellence program” for AK and the IMBIO program, l’Agence de la Biomédecine, Ministère de la Recherche, Fondation CENTAURE, Fondation Progreffe, an ECOS France-Chile grant and Millennium Nucleus on Immunology and Immunotherapy from Chile (P04/030-F). LC is a CONICYT fellow.


  1. 1.
    Ryter S W, Alam J, and Choi A M (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86: 583–650.PubMedCrossRefGoogle Scholar
  2. 2.
    Poss KD and Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A 94: 10919–10924.PubMedCrossRefGoogle Scholar
  3. 3.
    Yet S F, Perrella M A, Layne M D, et al (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 103: R23–R29.PubMedCrossRefGoogle Scholar
  4. 4.
    Kapturczak M H, Wasserfall C, Brusko T, et al (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165: 1045–1053.PubMedCrossRefGoogle Scholar
  5. 5.
    George J F, Braun A, Brusko T M, et al (2008) Suppression by CD4+CD25+ regulatory T cells is dependent on expression of heme oxygenase-1 in antigen-presenting cells. Am J Pathol 173: 154–160.PubMedCrossRefGoogle Scholar
  6. 6.
    Chung S W, Liu X, Macias A A, et al (2008) Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Invest 118: 239–247.PubMedCrossRefGoogle Scholar
  7. 7.
    Yachie A, Niida Y, Wada T, et al (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103: 129–135.PubMedCrossRefGoogle Scholar
  8. 8.
    Nath K A, Vercellotti G M, Grande J P, et al (2001) Heme protein-induced chronic renal inflammation: suppressive effect of induced heme oxygenase-1. Kidney Int 59: 106–117.PubMedCrossRefGoogle Scholar
  9. 9.
    Pittock S T, Norby S M, Grande J P, et al (2005) MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: pathophysiologic correlates. Kidney Int 68: 611–622.PubMedCrossRefGoogle Scholar
  10. 10.
    Otterbein L E, Bach F H, Alam J, et al (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6: 422–428.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee T S and Chau L Y (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8: 240–246.PubMedCrossRefGoogle Scholar
  12. 12.
    Rydkina E, Sahni A, Baggs R B, et al (2006) Infection of human endothelial cells with spotted fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect Immun 74: 5067–5074.PubMedCrossRefGoogle Scholar
  13. 13.
    Ren H, Leib S L, Ferriero D M, et al (2007) Induction of haem oxygenase-1 causes cortical non-haem iron increase in experimental pneumococcal meningitis: evidence that concomitant ferritin up-regulation prevents iron-induced oxidative damage. J Neurochem 100: 532–544.PubMedCrossRefGoogle Scholar
  14. 14.
    Vareille M, Rannou F, Thelier N, et al (2008) Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes. J Immunol 180: 5720–5726.PubMedGoogle Scholar
  15. 15.
    Shiloh M U, Manzanillo P, and Cox J S (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3: 323–330.PubMedCrossRefGoogle Scholar
  16. 16.
    Kumar A, Deshane J S, Crossman D K, et al (2008) Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283: 18032–18039.PubMedCrossRefGoogle Scholar
  17. 17.
    Zaki M H, Fujii S, Okamoto T, et al (2009) Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. J Immunol 182: 3746–3756.PubMedCrossRefGoogle Scholar
  18. 18.
    McAllister S C, Hansen S G, Ruhl R A, et al (2004) Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood 103: 3465–3473.PubMedCrossRefGoogle Scholar
  19. 19.
    Abdalla M Y, Ahmad I M, Spitz D R, et al (2005) Hepatitis C virus-core and non structural proteins lead to different effects on cellular antioxidant defenses. J Med Virol 76: 489–497.PubMedCrossRefGoogle Scholar
  20. 20.
    Ghaziani T, Shan Y, Lambrecht R W, et al (2006) HCV proteins increase expression of heme oxygenase-1 (HO-1) and decrease expression of Bach1 in human hepatoma cells. J Hepatol 45: 5–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Seixas E, Gozzelino R, Chora A, et al (2009) Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc Natl Acad Sci U S A 106: 15837–15842.PubMedCrossRefGoogle Scholar
  22. 22.
    Tzima S, Victoratos P, Kranidioti K, et al (2009) Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J Exp Med 206: 1167–1179.PubMedCrossRefGoogle Scholar
  23. 23.
    Protzer U, Seyfried S, Quasdorff M, Sass G, et al (2007) Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology 133: 1156–1165.PubMedCrossRefGoogle Scholar
  24. 24.
    Epiphanio S, Mikolajczak S A, Goncalves L A, et al (2008) Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe 3: 331–338.PubMedCrossRefGoogle Scholar
  25. 25.
    Sinnis P and Ernst J D (2008) CO-opting the host HO-1 pathway in tuberculosis and malaria. Cell Host Microbe 3: 277–279.PubMedCrossRefGoogle Scholar
  26. 26.
    Pamplona A, Ferreira A, Balla J, et al (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 13: 703–710.PubMedCrossRefGoogle Scholar
  27. 27.
    Willis D, Moore A R, and Willoughby D A (2000) Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat. J Pathol 190: 627–634.PubMedCrossRefGoogle Scholar
  28. 28.
    Kitada O, Kodama T, Kuribayashi K, et al (2001) Heme oxygenase-1 (HO-1) protein induction in a mouse model of asthma. Clin Exp Allergy 31: 1470–1477.PubMedCrossRefGoogle Scholar
  29. 29.
    Xia Z W, Zhong W W, Xu L Q, et al (2006) Heme oxygenase-1-mediated CD4+CD25high regulatory T cells suppress allergic airway inflammation. J Immunol 177: 5936–5945.PubMedGoogle Scholar
  30. 30.
    Listopad J, Asadullah K, Sievers C, et al (2007) Heme oxygenase-1 inhibits T cell-dependent skin inflammation and differentiation and function of antigen-presenting cells. Exp Dermatol 16: 661–670.PubMedCrossRefGoogle Scholar
  31. 31.
    Kirino M, Kirino Y, Takeno M, et al (2008) Heme oxygenase 1 attenuates the development of atopic dermatitis-like lesions in mice: implications for human disease. J Allergy Clin Immunol 122: 290–297, 297, e291–298.PubMedCrossRefGoogle Scholar
  32. 32.
    Xia Z W, Xu L Q, Zhong W W, et al (2007) Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-1. Am J Pathol 171: 1904–1914.PubMedCrossRefGoogle Scholar
  33. 33.
    Takamiya R, Murakami M, Kajimura M, et al (2002) Stabilization of mast cells by heme oxygenase-1: an anti-inflammatory role. Am J Physiol Heart Circ Physiol 283: H861–H870.PubMedGoogle Scholar
  34. 34.
    Yasui Y, Nakamura M, Onda T, et al (2007) Heme oxygenase-1 inhibits cytokine production by activated mast cells. Biochem Biophys Res Commun 354: 485–490.PubMedCrossRefGoogle Scholar
  35. 35.
    Chora A A, Fontoura P, Cunha A, et al (2007) Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 117: 438–447.PubMedCrossRefGoogle Scholar
  36. 36.
    Hu C M, Lin H H, Chiang M T, et al (2007) Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in NOD mice. Diabetes 56: 1240–1247.PubMedCrossRefGoogle Scholar
  37. 37.
    Li M, Peterson S, Husney D, Inaba M, et al (2007) Interdiction of the diabetic state in NOD mice by sustained induction of heme oxygenase: possible role of carbon monoxide and bilirubin. Antioxid Redox Signal 9: 855–863.PubMedCrossRefGoogle Scholar
  38. 38.
    Goldberg A, Parolini M, Chin B Y, et al (2007) Toll-like receptor 4 suppression leads to islet allograft survival. FASEB J 21: 2840–2848.PubMedCrossRefGoogle Scholar
  39. 39.
    Li Y, Li G, Dong W, Chen J, et al (2006) Transplantation of rat islets transduced with human heme oxygenase-1 gene using adenovirus vector. Pancreas 33: 280–286.PubMedCrossRefGoogle Scholar
  40. 40.
    Wagener F A, da Silva J L, Farley T, et al (1999) Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression. J Pharmacol Exp Ther 291: 416–423.PubMedGoogle Scholar
  41. 41.
    Wagener F A, Eggert A, Boerman O C, et al (2001) Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98: 1802–1811.PubMedCrossRefGoogle Scholar
  42. 42.
    Chauveau C, Remy S, Royer P, et al (2005) Heme oxygenase-1 expression inhibits dendritic cell maturation and pro-inflammatory function but conserves IL-10 expression. Blood 106: 1694–1702.PubMedCrossRefGoogle Scholar
  43. 43.
    Remy S, Blancou P, Tesson L, et al (2009) Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. J Immunol 182: 1877–1884.PubMedCrossRefGoogle Scholar
  44. 44.
    Soares M P, Lin Y, Anrather J, et al (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4: 1073–1077.PubMedCrossRefGoogle Scholar
  45. 45.
    Sato K, Balla J, Otterbein L, Smith R, et al (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 166: 4185–4194.PubMedGoogle Scholar
  46. 46.
    Yamashita K, Ollinger R, McDaid J, et al (2006) Heme oxygenase-1 is essential for and promotes tolerance to transplanted organs. FASEB J 20: 776–778.PubMedGoogle Scholar
  47. 47.
    Nakao A, Kimizuka K, Stolz D B, et al (2003) Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 134: 285–292.PubMedCrossRefGoogle Scholar
  48. 48.
    Nakao A, Toyokawa H, Tsung A, et al (2006) Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 6: 2243–2255.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakao A, Otterbein L E, Overhaus M, et al (2004) Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 127: 595–606.PubMedCrossRefGoogle Scholar
  50. 50.
    Neto J S, Nakao A, Kimizuka K, et al (2004) Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287: F979–F989.PubMedCrossRefGoogle Scholar
  51. 51.
    Faleo G, Neto J S, Kohmoto J, et al (2008) Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation 85: 1833–1840.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaizu T, Ikeda A, Nakao A, et al (2008) Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol 294: G236–G244.PubMedCrossRefGoogle Scholar
  53. 53.
    Nakao A, Neto J S, Kanno S, et al (2005) Protection against ischemia/reperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am J Transplant 5: 282–291.PubMedCrossRefGoogle Scholar
  54. 54.
    Bouche D, Chauveau C, Roussel J C, et al (2002) Inhibition of graft arteriosclerosis development in rat aortas following heme oxygenase-1 gene transfer. Transpl Immunol 9: 235–238.PubMedCrossRefGoogle Scholar
  55. 55.
    Clarke H M, Shrivastava S, Motterlini R, et al (2009) Donor HO-1 expression inhibits intimal hyperplasia in unmanipulated graft recipients: a potential role for CD8+ T-cell modulation by carbon monoxide. Transplantation 88: 653–661.PubMedCrossRefGoogle Scholar
  56. 56.
    Chauveau C, Bouchet D, Roussel J, et al (2002) Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transplant 2: 581–592.PubMedCrossRefGoogle Scholar
  57. 57.
    Braudeau C, Bouchet D, Tesson L, et al (2004) Induction of long-term cardiac allograft survival by heme oxygenase-1 gene transfer. Gene Ther 11: 701–710.PubMedCrossRefGoogle Scholar
  58. 58.
    Araujo J A, Meng L, Tward A D, et al (2003) Systemic rather than local heme oxygenase-1 overexpression improves cardiac allograft outcomes in a new transgenic mouse. J Immunol 171: 1572–1580.PubMedGoogle Scholar
  59. 59.
    Kotsch K, Martins P N, Klemz R, et al (2007) Heme oxygenase-1 ameliorates ischemia/reperfusion injury by targeting dendritic cell maturation and migration. Antioxid Redox Signal 9: 2049–2063.PubMedCrossRefGoogle Scholar
  60. 60.
    Peche H, Trinite B, Martinet B, et al (2005) Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 5: 255–267.PubMedCrossRefGoogle Scholar
  61. 61.
    Moreau A, Hill M, Thebault P, et al (2009) Tolerogenic dendritic cells actively inhibit T cells through heme oxygenase-1 in rodents and in nonhuman primates. FASEB J 23: 3070–3077.PubMedCrossRefGoogle Scholar
  62. 62.
    Chabannes D, Hill M, Merieau E, et al (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110: 3691–3694.PubMedCrossRefGoogle Scholar
  63. 63.
    Trigona W L, Porter C M, Horvath-Arcidiacono J A, et al (2007) Could heme-oxygenase-1 have a role in modulating the recipient immune response to embryonic stem cells? Antioxid Redox Signal 9: 751–756.PubMedCrossRefGoogle Scholar
  64. 64.
    Becker T, Zu Vilsendorf A M, Terbish T, et al (2007) Induction of heme oxygenase-1 improves the survival of pancreas grafts by prevention of pancreatitis after transplantation. Transplantation 84: 1644–1655.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang H, Lee S S, Gao W, et al (2005) Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes 54: 1400–1406.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang H, Lee S S, Dell’Agnello C, et al (2006) Bilirubin can induce tolerance to islet allografts. Endocrinology 147: 762–768.PubMedCrossRefGoogle Scholar
  67. 67.
    Lee S S, Gao W, Mazzola S, et al (2007) Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. FASEB J 21: 3450–3457.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee D Y, Lee S, Nam J H, et al (2006) Minimization of immunosuppressive therapy after islet transplantation: combined action of heme oxygenase-1 and PEGylation to islet. Am J Transplant 6: 1820–1828.PubMedCrossRefGoogle Scholar
  69. 69.
    Pulskens W P, Teske G J, Butter L M, et al (2008) Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One 3: e3596.PubMedCrossRefGoogle Scholar
  70. 70.
    Kaczorowski D J, Nakao A, Vallabhaneni R, et al (2009) Mechanisms of toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation 87: 1455–1463.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaczorowski D J, Nakao A, Mollen K P, et al (2007) Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation 84: 1279–1287.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhai Y, Shen X D, O’Connell R, et al (2004) Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 173: 7115–7119.PubMedGoogle Scholar
  73. 73.
    Methe H, Zimmer E, Grimm C, et al (2004) Evidence for a role of toll-like receptor 4 in development of chronic allograft rejection after cardiac transplantation. Transplantation 78: 1324–1331.PubMedCrossRefGoogle Scholar
  74. 74.
    Tsuchihashi S, Zhai Y, Fondevila C, et al (2005) HO-1 upregulation suppresses type 1 IFN pathway in hepatic ischemia/reperfusion injury. Transplant Proc 37: 1677–1678.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsuchihashi S, Zhai Y, Bo Q, et al (2007) Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury: inhibition of type-1 interferon signaling. Transplantation 83: 1628–1634.PubMedCrossRefGoogle Scholar
  76. 76.
    Nakahira K, Kim H P, Geng X H, et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203: 2377–2389.PubMedCrossRefGoogle Scholar
  77. 77.
    Arbour N C, Lorenz E, Schutte B C, et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25: 187–191.PubMedCrossRefGoogle Scholar
  78. 78.
    Rallabhandi P, Bell J, Boukhvalova M S, et al (2006) Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 177: 322–332.PubMedGoogle Scholar
  79. 79.
    Kruger B, Krick S, Dhillon N, et al (2009) Donor toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci U S A 106: 3390–3395.PubMedCrossRefGoogle Scholar
  80. 80.
    Shen X D, Ke B, Zhai Y, et al (2005) Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury. Am J Transplant 5: 1793–1800.PubMedCrossRefGoogle Scholar
  81. 81.
    Exner M, Bohmig G A, Schillinger M, et al (2004) Donor heme oxygenase-1 genotype is associated with renal allograft function. Transplantation 77: 538–542.PubMedCrossRefGoogle Scholar
  82. 82.
    Ozaki K S, Marques G M, Nogueira E, et al (2008) Improved renal function after kidney transplantation is associated with heme oxygenase-1 polymorphism. Clin Transplant 22: 609–616.PubMedCrossRefGoogle Scholar
  83. 83.
    Baan C, Peeters A, Lemos F, et al (2004) Fundamental role for HO-1 in the self-protection of renal allografts. Am J Transplant 4: 811–818.PubMedCrossRefGoogle Scholar
  84. 84.
    Courtney A E, McNamee P T, Middleton D, et al (2007) Association of functional heme oxygenase-1 gene promoter polymorphism with renal transplantation outcomes. Am J Transplant 7: 908–913.PubMedCrossRefGoogle Scholar
  85. 85.
    Hribova P, Reinke P, Petrasek J, et al (2008) Heme oxygenase-1 polymorphisms and renal transplantation outcomes: balancing at the detection limit of allelic association studies. Am J Transplant 8: 1077–1078; author reply 1079.PubMedCrossRefGoogle Scholar
  86. 86.
    Ullrich R, Exner M, Schillinger M, et al (2005) Microsatellite polymorphism in the heme oxygenase-1 gene promoter and cardiac allograft vasculopathy. J Heart Lung Transplant 24: 1600–1605.PubMedCrossRefGoogle Scholar
  87. 87.
    Buis C I, van der Steege G, Visser D S, et al (2008) Heme oxygenase-1 genotype of the donor is associated with graft survival after liver transplantation. Am J Transplant 8: 377–385.PubMedCrossRefGoogle Scholar
  88. 88.
    Pae H O, Oh G S, Choi B M, et al (2003) Differential expressions of heme oxygenase-1 gene in CD25− and CD25+ subsets of human CD4+ T cells. Biochem Biophys Res Commun 306: 701–705.PubMedCrossRefGoogle Scholar
  89. 89.
    Choi B M, Pae H O, Jeong Y R, et al (2005) Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem Biophys Res Commun 327: 1066–1071.PubMedCrossRefGoogle Scholar
  90. 90.
    Biburger M, Theiner G, Schadle M, et al (2010) Pivotal advance: heme oxygenase 1 expression by human CD4+ T cells is not sufficient for their development of immunoregulatory capacity. J Leukoc Biol 87: 193–202.PubMedCrossRefGoogle Scholar
  91. 91.
    Blancou P and Anegon I (2010) Heme oxygenase-1 and dendritic cells: what else? J Leuckoc Biol 87: 185–187.CrossRefGoogle Scholar
  92. 92.
    Zelenay S, Chora A, Soares M P, et al (2007) Heme oxygenase-1 is not required for mouse regulatory T cell development and function. Int Immunol 19: 11–18.PubMedCrossRefGoogle Scholar
  93. 93.
    Liu Y, Li P, Lu J, Xiong W, et al (2008) Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J Immunol 181: 1887–1897.PubMedGoogle Scholar
  94. 94.
    Yamashita K, McDaid J, Ollinger R, et al (2004) Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J 18: 765–767.PubMedGoogle Scholar
  95. 95.
    Pae H O, Oh G S, Choi B M, et al (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol 172: 4744–4751.PubMedGoogle Scholar
  96. 96.
    Song R, Mahidhara R S, Zhou Z, et al (2004) Carbon monoxide inhibits T lymphocyte proliferation via caspase-dependent pathway. J Immunol 172: 1220–1226.PubMedGoogle Scholar
  97. 97.
    Morse D, Pischke S E, Zhou Z, et al (2003) Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 278: 36993–36998.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang X M, Kim H P, Nakahira K, et al (2009) The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol 182: 3809–3818.PubMedCrossRefGoogle Scholar
  99. 99.
    Poss KD and Tonegawa S (1997) Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A 94: 10925–10930.PubMedCrossRefGoogle Scholar
  100. 100.
    Clausen B E, Burkhardt C, Reith W, et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8: 265–277.PubMedCrossRefGoogle Scholar
  101. 101.
    Mashreghi M F, Klemz R, Knosalla I S, et al (2008) Inhibition of dendritic cell maturation and function is independent of heme oxygenase 1 but requires the activation of STAT3. J Immunol 180: 7919–7930.PubMedGoogle Scholar
  102. 102.
    Hill M, Pereira V, Chauveau C, et al (2005) Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J 19: 1957–1968.PubMedCrossRefGoogle Scholar
  103. 103.
    Andersen M H, Sorensen R B, Brimnes M K, et al (2009) Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients. J Clin Invest 119: 2245–2256.PubMedCrossRefGoogle Scholar
  104. 104.
    De Wilde V, Van Rompaey N, Hill M, et al (2009) Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant 9: 2034–2047.PubMedCrossRefGoogle Scholar
  105. 105.
    Li M, Peterson S, Husney D, et al (2007) Long-lasting expression of HO-1 delays progression of type I diabetes in NOD mice. Cell Cycle 6: 567–571.PubMedCrossRefGoogle Scholar
  106. 106.
    Kohmoto J, Nakao A, Sugimoto R, et al (2008) Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardiovasc Surg 136: 1067–1075.PubMedCrossRefGoogle Scholar
  107. 107.
    Taille C, El-Benna J, Lanone S, et al (2005) Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 280: 25350–25360.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Philippe Blancou
    • 1
    • 2
    Email author
  • Virginie Tardif
    • 3
    • 4
    • 5
  • Thomas Simon
    • 3
    • 4
    • 5
  • Séverine Rémy
    • 3
    • 4
    • 5
  • Leandro Carreño
    • 6
  • Alexis Kalergis
    • 6
  • Ignacio Anegon
    • 3
    • 4
    • 5
  1. 1.ONIRISNantesFrance
  2. 2.INRA, UMR_A 707NantesFrance
  3. 3.INSERM UMR 643NantesFrance
  4. 4.Institut de Transplantation et de Recherche en Transplantation (ITERT)CHU NantesNantesFrance
  5. 5.Faculté de MédecineUniversité de NantesNantesFrance
  6. 6.Millenium Nucleus of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Catolica de ChileSantiagoChile

Personalised recommendations