Skip to main content

A Mesenchymal Stem Cell Potency Assay

  • Protocol
  • First Online:
Suppression and Regulation of Immune Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 677))

Abstract

Mesenchymal stem cells (MSCs) are capable of modulating the immune system and have been used to successfully treat a variety of inflammatory diseases in preclinical studies. Recent evidence has implicated paracrine signaling as the predominant mechanism of MSC therapeutic activity. We have shown in models of inflammatory organ failure that the factors secreted by MSCs are capable of enhancing survival, downregulating inflammation, and promoting endogenous repair programs that lead to the reversal of these diseases. As a marker of disease resolution, we have observed an increase in serum IL-10 when MSC-conditioned medium (MSC-CM) or lysate (MSC-Ly) is administered in vivo. Here we present an in vitro model of IL-10 release from blood cells that recapitulates this in vivo phenomenon. This assay provides a powerful tool in analyzing the potency of MSC-CM and MSC-Ly, as well as characterizing the interaction between MSC-CM and target cells in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet 363.9419 (2004): 1439–441.

    Article  Google Scholar 

  2. Aggarwal, S., M. F. Pittenger. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 10.4 (2005): 1815–822.

    Article  Google Scholar 

  3. Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, A. Moseley, R. Hoffman. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology 30.1 (2002): 42–48.

    Article  PubMed  Google Scholar 

  4. Ringden, O., M. Uzunel, I. Rasmusson, M. Remberger, B. Sundberg, H. Lonnies, HU Marschall, A. Dlugosz, A. Szakos, Z. Hassan, B. Omazic, J. Aschan, L. Barkholt, K. Le Blanc. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81.10 (2006): 1390–397.

    Article  PubMed  Google Scholar 

  5. Perin, E. C., H. F. Dohmann, R. Borojevic, S. A. Silva, A. L. Sousa, C. T. Mesquita, M. I. Rossi, A. C. Carvalho, H. S. Dutra, H. J. Dohmann, G. V. Silva, L. Belem, R. Vivacqua, F. O. Rangel, R. Esporcatte, Y. J. Geng, W. K. Vaughn, J. A. Assad, E. T. Mesquita, J. T. Willerson. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107.18 (2003): 9040–42.

    Article  Google Scholar 

  6. Miyahara, Y., N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka, H. Hao, K. Ishino, H. Ishida, T.Shimizu, K. Kangawa, S. Sano, T. Okano, S. Kitamura, H. Mori. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine 12 (2006): 459–65.

    Article  PubMed  CAS  Google Scholar 

  7. Jin, H. K., J. E. Carter, G. W. Hungtley, E. H. Schuchman. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. Journal of Clinical Investigation 109.9 (2002): 1183–191.

    PubMed  CAS  Google Scholar 

  8. Zhao, L. R., W. M Duan, M. Reyes, C. D. Keene, C. M. Verfaillie, W. C. Low. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology 174.1 (2002): 11–20.

    Article  PubMed  Google Scholar 

  9. Giordano, A., U. Galderisi, I. R. Marino. From the laboratory bench to the patient’s bedside: An update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology 211.1 (2007): 27–35.

    Article  PubMed  CAS  Google Scholar 

  10. Horwitz, E. M., D. J. Prockop, L. A. Fitzpatrick, W. W. Koo, P. L. Gordon, M. Neel, M. Sussman, P. Orchard, J. C. Marx, R. E. Pyeritz, M. K. Brenner. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine 5 (1999): 309–13.

    Article  PubMed  CAS  Google Scholar 

  11. Gnecchi, M., H. He, N. Noiseux, O. D. Liang, L. Zhang, F. Morello, H. Mu, L. G. Melo, R. E. Pratt, J. S. Ingwall, V. J. Dzau. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal 20 (2006): 661–69.

    Article  CAS  Google Scholar 

  12. Mirotsou, M., Z. Zhang, A. Deb, L. Zhang, M. Gnecchi, N. Noiseux, H. Mu, A.Pachori, V. Dzau. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. PNAS 104.5 (2006): 1643–648.

    Article  Google Scholar 

  13. Kinnarid, T., E. Stabile, M. S. Burnett, C. W. Lee, S. Barr, S. Fuchs, S. E. Epstein. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research 94 (2004): 678–85.

    Article  Google Scholar 

  14. Parekkadan, B., D. VanPoll, K. Suganuma, E. A. Carter, F. Berthiaume, A. W. Tilles, M. L. Yarmush. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2.9 (2007): e941.

    Article  PubMed  Google Scholar 

  15. Van Poll, D., B. Parekkadan, C. H. Cho, F. Berthiaume, Y. Nahmias, A. W. Tilles, M. L. Yarmush. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47.5 (2008): 1634–643.

    Article  PubMed  Google Scholar 

  16. Németh, K., A. Leelahavanichkul, P. S. Yuen, B. Mayer, A. Parmelee, K. Doi, P. G. Robey, K. Leelahavanichkul, B. H. Koller, J. M. Brown, X. Hu, I. Jelinek, R. A. Star, É. Mezey. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 15 (2008): 42–49.

    Article  PubMed  Google Scholar 

  17. De Waal Malefyt, R., J. Abrams, B. Bennett, C. G. Figdor, J. E. de Vries. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. Journal of Experimental Medicine 174 (1991): 1209–220.

    Article  PubMed  CAS  Google Scholar 

  18. Deng, J., Y. Kohda, H. Chiao, Y. Wang, X. Hu, S. M. Hewitt, T. Miyaji, P. Mcleroy, B. Nibhanupudy, S. Lim, R. A. Star. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney International 60 (2001): 2118–128.

    Article  PubMed  CAS  Google Scholar 

  19. Parekkadan, B. Cellular and molecular immunotherapeutics derived from the bone marrow stroma. Massachusetts Institute of Technology, Doctoral Thesis (2008).

    Google Scholar 

  20. Lazarus, H., O. Koc, S. Devine, P. Curtin, R. Maziarz, H. Holland, E. Shpall, P. McCarthy, K. Atkinson, B. Cooper. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation 11.5 (2005): 389–98.

    Article  PubMed  Google Scholar 

  21. Baba, S. Clinical trials of regeneration for periodontal tissue. Home – ClinicalTrials.gov. (2005). Web. 18 Aug 2009. <http://clinicaltrials.gov/ct2/show/NCT00221130>.

  22. Kastrup, J. Stem cell therapy for vasculogenesis in patients with severe myocardial ischemia. Home – ClinicalTrials.gov. (2005). Web. 18 Aug 2009. <http://clinicaltrials.gov/ct2/show/NCT00260338>.

  23. Lee, O. K., T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, T. H. Chen. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103 (2004): 1669–675.

    Article  PubMed  CAS  Google Scholar 

  24. Bianco, P., S. A. Kuznetsov, M. Riminucci, L. W. Fisher, A. M. Spiegel, P. G. Robey. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gs a-mutated skeletal progenitor cells. The Journal of Clinical Investigation 101.8 (1998): 1737–744.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the National Institutes of Health (R01 DK43371), MIT Class of 1972 Fund, and the Shriners Hospitals for Children.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Jiao, J., Milwid, J.M., Yarmush, M.L., Parekkadan, B. (2010). A Mesenchymal Stem Cell Potency Assay. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 677. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-869-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-869-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-868-3

  • Online ISBN: 978-1-60761-869-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics