Skip to main content

NKT and Tolerance

  • Protocol
  • First Online:
Book cover Suppression and Regulation of Immune Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 677))

Abstract

NKT cells are innate-like αβ T cells that are conserved between humans and mice. They are distinct from conventional T cells as they recognize lipid antigens presented by the CD1d molecule. Most NKT cells expressed a highly restricted TCR repertoire and can be activated by α-galactosylceramide (α-GalCer) and detected by α-GalCer-loaded-CD1d tetramers. Upon activation, NKT cells respond in few hours by producing cytokines and stimulating many other cells of the innate and adaptive immune system. Over the last decade, many studies have analyzed the regulatory role of NKT cells that can either suppress or exacerbate immune functions. This chapter describes the tools and techniques required to study in vivo and in vitro the regulatory role of NKT cells in mouse as well as from human blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kronenberg, M. and L. Gapin (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol. 2(8): p. 557–68.

    PubMed  CAS  Google Scholar 

  2. Bendelac, A., P.B. Savage and L. Teyton (2007) The biology of NKT cells. Annu Rev Immunol. 25: p. 297–336.

    Article  PubMed  CAS  Google Scholar 

  3. Mendiratta, S.K., W.D. Martin, S. Hong, et al. (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity. 6(4): p. 469–77.

    Article  PubMed  CAS  Google Scholar 

  4. Cui, J., T. Shin, T. Kawano, et al. (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 278(5343): p. 1623–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bendelac, A., R.D. Hunziker and O. Lantz (1996) Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med. 184(4): p. 1285–93.

    Article  PubMed  CAS  Google Scholar 

  6. Lehuen, A., O. Lantz, L. Beaudoin, et al. (1998) Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med. 188(10): p. 1831–9.

    Article  PubMed  CAS  Google Scholar 

  7. Duarte, N., M. Stenstrom, S. Campino, et al. (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol. 173(5): p. 3112–8.

    PubMed  CAS  Google Scholar 

  8. Skold, M., N.N. Faizunnessa, C.R. Wang, et al. (2000) CD1d-specific NK1.1+ T cells with a transgenic variant TCR. J Immunol. 165(1): p. 168–74.

    PubMed  CAS  Google Scholar 

  9. Benlagha, K., A. Weiss, A. Beavis, et al. (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med. 191(11): p. 1895–903.

    Article  PubMed  CAS  Google Scholar 

  10. Matsuda, J.L., O.V. Naidenko, L. Gapin, et al. (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med. 192(5): p. 741–54.

    Article  PubMed  CAS  Google Scholar 

  11. Mars, L.T., A.S. Gautron, J. Novak, et al. (2008) Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J Immunol. 181(4): p. 2321–9.

    PubMed  CAS  Google Scholar 

  12. Beaudoin, L., V. Laloux, J. Novak, et al. (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity. 17(6): p. 725–36.

    Article  PubMed  CAS  Google Scholar 

  13. Novak, J., L. Beaudoin, T. Griseri, et al. (2005) Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts. J Immunol. 174(4): p. 1954–61.

    PubMed  CAS  Google Scholar 

  14. Brossay, L., M. Chioda, N. Burdin, et al. (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 188(8): p. 1521–8.

    Article  PubMed  CAS  Google Scholar 

  15. Casorati, G., A. Traunecker and K. Karjalainen (1993) The T cell receptor alpha beta V-J shuffling shows lack of autonomy between the combining site and the constant domain of the receptor chains. Eur J Immunol. 23(2): p. 586–9.

    Article  PubMed  CAS  Google Scholar 

  16. Diana, J., T. Griseri, S. Lagaye, et al. (2009) NKT Cell-plasmacytoid dendritic cell cooperation via OX40 controls viral infection in a tissue-specific manner. Immunity. 30(2): p. 289–99.

    Article  PubMed  CAS  Google Scholar 

  17. Laloux, V., L. Beaudoin, C. Ronet, et al. (2002) Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J Immunol. 168(7): p. 3251–8.

    PubMed  CAS  Google Scholar 

  18. Wei, D.G., H. Lee, S.H. Park, et al. (2005) Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med. 202(2): p. 239–48.

    Article  PubMed  CAS  Google Scholar 

  19. Novak, J., L. Beaudoin, S. Park, et al. (2007) Prevention of type 1 diabetes by invariant NKT cells is independent of peripheral CD1d expression. J Immunol. 178(3): p. 1332–40.

    PubMed  CAS  Google Scholar 

  20. Schumann, J., P. Pittoni, E. Tonti, et al. (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol. 175(11): p. 7303–10.

    PubMed  Google Scholar 

  21. Abrignani, S., E. Tonti, G. Casorati, et al. (2009) B cell helper assays. Methods Mol Biol. 514: p. 15–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Diana, J., Beaudoin, L., Gautron, AS., Lehuen, A. (2010). NKT and Tolerance. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 677. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-869-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-869-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-868-3

  • Online ISBN: 978-1-60761-869-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics