NKT and Tolerance

  • Julien Diana
  • Lucie Beaudoin
  • Anne-Sophie Gautron
  • Agnès Lehuen
Part of the Methods in Molecular Biology book series (MIMB, volume 677)


NKT cells are innate-like αβ T cells that are conserved between humans and mice. They are distinct from conventional T cells as they recognize lipid antigens presented by the CD1d molecule. Most NKT cells expressed a highly restricted TCR repertoire and can be activated by α-galactosylceramide (α-GalCer) and detected by α-GalCer-loaded-CD1d tetramers. Upon activation, NKT cells respond in few hours by producing cytokines and stimulating many other cells of the innate and adaptive immune system. Over the last decade, many studies have analyzed the regulatory role of NKT cells that can either suppress or exacerbate immune functions. This chapter describes the tools and techniques required to study in vivo and in vitro the regulatory role of NKT cells in mouse as well as from human blood.

Key words

NKT α-GalCer Immunoregulation Suppressive Cytokine Dendritic cell 


  1. 1.
    Kronenberg, M. and L. Gapin (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol. 2(8): p. 557–68.PubMedGoogle Scholar
  2. 2.
    Bendelac, A., P.B. Savage and L. Teyton (2007) The biology of NKT cells. Annu Rev Immunol. 25: p. 297–336.PubMedCrossRefGoogle Scholar
  3. 3.
    Mendiratta, S.K., W.D. Martin, S. Hong, et al. (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity. 6(4): p. 469–77.PubMedCrossRefGoogle Scholar
  4. 4.
    Cui, J., T. Shin, T. Kawano, et al. (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 278(5343): p. 1623–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Bendelac, A., R.D. Hunziker and O. Lantz (1996) Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med. 184(4): p. 1285–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Lehuen, A., O. Lantz, L. Beaudoin, et al. (1998) Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med. 188(10): p. 1831–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Duarte, N., M. Stenstrom, S. Campino, et al. (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol. 173(5): p. 3112–8.PubMedGoogle Scholar
  8. 8.
    Skold, M., N.N. Faizunnessa, C.R. Wang, et al. (2000) CD1d-specific NK1.1+ T cells with a transgenic variant TCR. J Immunol. 165(1): p. 168–74.PubMedGoogle Scholar
  9. 9.
    Benlagha, K., A. Weiss, A. Beavis, et al. (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med. 191(11): p. 1895–903.PubMedCrossRefGoogle Scholar
  10. 10.
    Matsuda, J.L., O.V. Naidenko, L. Gapin, et al. (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med. 192(5): p. 741–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Mars, L.T., A.S. Gautron, J. Novak, et al. (2008) Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J Immunol. 181(4): p. 2321–9.PubMedGoogle Scholar
  12. 12.
    Beaudoin, L., V. Laloux, J. Novak, et al. (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity. 17(6): p. 725–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Novak, J., L. Beaudoin, T. Griseri, et al. (2005) Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts. J Immunol. 174(4): p. 1954–61.PubMedGoogle Scholar
  14. 14.
    Brossay, L., M. Chioda, N. Burdin, et al. (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 188(8): p. 1521–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Casorati, G., A. Traunecker and K. Karjalainen (1993) The T cell receptor alpha beta V-J shuffling shows lack of autonomy between the combining site and the constant domain of the receptor chains. Eur J Immunol. 23(2): p. 586–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Diana, J., T. Griseri, S. Lagaye, et al. (2009) NKT Cell-plasmacytoid dendritic cell cooperation via OX40 controls viral infection in a tissue-specific manner. Immunity. 30(2): p. 289–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Laloux, V., L. Beaudoin, C. Ronet, et al. (2002) Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J Immunol. 168(7): p. 3251–8.PubMedGoogle Scholar
  18. 18.
    Wei, D.G., H. Lee, S.H. Park, et al. (2005) Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med. 202(2): p. 239–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Novak, J., L. Beaudoin, S. Park, et al. (2007) Prevention of type 1 diabetes by invariant NKT cells is independent of peripheral CD1d expression. J Immunol. 178(3): p. 1332–40.PubMedGoogle Scholar
  20. 20.
    Schumann, J., P. Pittoni, E. Tonti, et al. (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol. 175(11): p. 7303–10.PubMedGoogle Scholar
  21. 21.
    Abrignani, S., E. Tonti, G. Casorati, et al. (2009) B cell helper assays. Methods Mol Biol. 514: p. 15–26.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Julien Diana
    • 1
    • 2
  • Lucie Beaudoin
    • 1
    • 2
  • Anne-Sophie Gautron
    • 1
    • 2
  • Agnès Lehuen
    • 1
    • 2
  1. 1.INSERM U986Hôpital Cochin/St Vincent de PaulParisFrance
  2. 2.Université Paris DescartesParisFrance

Personalised recommendations