Myeloid-Derived Suppressor Cells: Characterization and Expansion in Models of Endotoxemia and Transplantation

  • Nicolas Van RompaeyEmail author
  • Alain Le Moine
Part of the Methods in Molecular Biology book series (MIMB, volume 677)


CD11b+GR1+ myeloid-derived suppressor cells (MDSC) accumulate in several inflammatory conditions including cancer, infections, or trauma. MDSCs are found in bone marrow and lymphoid organs and suppress both innate and adaptive immune responses. Although mechanisms of suppression are not fully understood, they have been reported to require cell–cell contact and very often implicate l-arginine metabolism. We and others recently observed that lipopolysaccharide (LPS) administration, as other TLR ligands, induces MDSC. In this case, MDSC regulate immune response independently of l-arginine metabolism through heme oxygenase-1 activity. Manipulating MDSC as immunoregulators represents an attractive approach for cancer immunotherapy or transplantation. Herein, we describe methods for expanding and purifying MDSC, as well as in vitro and in vivo techniques to measure their suppressive functions.

Key words

Myeloid-derived suppressor cells Lipopolysaccharide T cells Transplantation Heme oxygenase-1 



Nicolas Van Rompaey is Research Fellow of the Fonds Erasme and Alain Le Moine is Research associate of the Fonds National de la Recherche Scientifique FNRS-Belgium.


  1. 1.
    Strober, S. (1984). Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu. Rev. Immunol. 2: 219–237.PubMedCrossRefGoogle Scholar
  2. 2.
    Ostrand-Rosenberg, S., and P. Sinha. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182: 4499–4506.PubMedCrossRefGoogle Scholar
  3. 3.
    Bronte, V., and P. Zanovello. (2005). Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5: 641–654.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang, W., S. Liang, J. Wu, and A. Horuzsko. (2008). Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation 86: 1125–1134.PubMedCrossRefGoogle Scholar
  5. 5.
    Ezernitchi, A. V., I. Vaknin, L. Cohen-Daniel, O. Levy, E. Manaster, A. Halabi, E. Pikarsky, L. Shapira, and M. Baniyash. (2006). TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J. Immunol. 177: 4763–4772.PubMedGoogle Scholar
  6. 6.
    Almand, B., J. I. Clark, E. Nikitina, J. van Beynen, N. R. English, S. C. Knight, D. P. Carbone, and D. I. Gabrilovich. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166: 678–689.PubMedGoogle Scholar
  7. 7.
    Gabrilovich, D. I., and S. Nagaraj. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9: 162–174.PubMedCrossRefGoogle Scholar
  8. 8.
    Mazzoni, A., V. Bronte, A. Visintin, J. H. Spitzer, E. Apolloni, P. Serafini, P. Zanovello, and D. M. Segal. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168: 689–695.PubMedGoogle Scholar
  9. 9.
    Nagaraj, S., K. Gupta, V. Pisarev, L. Kinarsky, S. Sherman, L. Kang, D. L. Herber, J. Schneck, and D. I. Gabrilovich. (2007). Altered recognition of antigen is a mechanism of CD8+ T-cell tolerance in cancer. Nat. Med. 13: 828–835.PubMedCrossRefGoogle Scholar
  10. 10.
    De Wilde, V., N. Van Rompaey, M. Hill, J. F. Lebrun, P. Lemaitre, F. Lhomme, C. Kubjak, B. Vokaer, G. Oldenhove, L. M. Charbonnier, M. C. Cuturi, M. Goldman, and A. Le Moine. (2009). Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am. J. Transplant. 9: 2034–2047.PubMedCrossRefGoogle Scholar
  11. 11.
    Ryter, S. W., J. Alam, and A. M. Choi. (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 86: 583–650.PubMedCrossRefGoogle Scholar
  12. 12.
    Gasser, D. L., and W. K. Silvers. (1972). Genetics and immunology of sex-linked antigens. Adv. Immunol. 15: 215–247.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  1. 1.Institute for Medical ImmunologyUniversité Libre de BruxellesGosseliesBelgium

Personalised recommendations