In Vitro-Generated DC with Tolerogenic Functions: Perspectives for In Vivo Cellular Therapy

  • Cees van KootenEmail author
  • Kyra A. Gelderman
Part of the Methods in Molecular Biology book series (MIMB, volume 677)


Dendritic cells (DCs) have a central role in immune regulation and serve as an essential link between innate and adaptive immunity. Their broad range of powerful immune stimulatory as well as regulatory functions has made DCs a target for vaccine development strategies. One approach to promote the tolerogenicity of DCs is to suppress their maturation by pharmacological agents, including the glucocorticoid dexamethasone. In this chapter, we describe methods to generate tolerogenic Dex-DC derived from either human peripheral blood monocytes or rat bone marrow cells.

Key words

Dendritic cells Tolerance Dexamethasone Human Rat 



These studies have been supported by grants from the Dutch Kidney Foundation, NWO, and the EU (FP6-RISET).


  1. 1.
    Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity, Nature 392, 245–252.PubMedCrossRefGoogle Scholar
  2. 2.
    Steinman, R. M. and Banchereau, J. (2007) Taking dendritic cells into medicine, Nature 449, 419–426.PubMedCrossRefGoogle Scholar
  3. 3.
    Reis, E. and Sousa, C. (2006) Dendritic cells in a mature age, Nat. Rev. Immunol. 6, 476–483.CrossRefGoogle Scholar
  4. 4.
    Lutz, M. and Schuler, G. (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445.PubMedCrossRefGoogle Scholar
  5. 5.
    Steinman, R. M., Hawiger, D., and Nussenzweig, M. C. (2003) Tolerogenic dendritic cells, Annu. Rev. Immunol. 21, 685–711.PubMedCrossRefGoogle Scholar
  6. 6.
    Hackstein, H. and Thomson, A. W. (2004) Dendritic cells: emerging pharmacological targets of immunosuppressive drugs, Nat. Rev. Immunol. 4, 24–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Woltman, A. M. and van Kooten, C. (2003) Functional modulation of dendritic cells to suppress adaptive immune responses, J. Leukoc. Biol. 73, 428–441.PubMedCrossRefGoogle Scholar
  8. 8.
    Adorini, L., Giarratana, N., and Penna, G. (2004) Pharmacological induction of tolerogenic dendritic cells and regulatory T cells, Semin. Immunol. 16, 127–134.PubMedCrossRefGoogle Scholar
  9. 9.
    Morelli, A. E. and Thomson, A. W. (2007) Tolerogenic dendritic cells and the quest for transplant tolerance, Nat. Rev. Immunol. 7, 610–621.PubMedCrossRefGoogle Scholar
  10. 10.
    van Kooten, C., Stax, A. S., Woltman, A. M., and Gelderman, K. A. (2009) Handbook of experimental pharmacology “dendritic cells”: the use of dexamethasone in the induction of tolerogenic DCs, Handb. Exp. Pharmacol. 188, 233–249.PubMedCrossRefGoogle Scholar
  11. 11.
    Piemonti, L., Monti, P., Allavena, P., Sironi, M., Soldini, L., Leone, B. E., Socci, C., and Di Catlo, V. (1999) Glucocorticoids affect human dendritic cell differentiation and maturation, J. Immunol. 162, 6473–6481.PubMedGoogle Scholar
  12. 12.
    Woltman, A. M., De Fijter, J. W., Kamerling, S. W., Paul, L. C., Daha, M. R., and van Kooten, C. (2000) The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells, Eur. J. Immunol. 30, 1807–1812.PubMedCrossRefGoogle Scholar
  13. 13.
    Vieira, P. L., Kalinski, P., Wierenga, E. A., Kapsenberg, M. L., and de Jong, E. C. (1998) Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential, J. Immunol. 161, 5245–5251.PubMedGoogle Scholar
  14. 14.
    Rea, D., van Kooten, C., Van Meijgaarden, K. E., Melief, C. J. M., and Offringa, R. (2000) Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen presenting cells that secrete IL-10, Blood 95, 3162–3167.PubMedGoogle Scholar
  15. 15.
    Woltman, A. M., Van der Kooij, S. W., De Fijter, J. W., and van Kooten, C. (2006) Maturation-resistant dendritic cells induce hyporesponsiveness in alloreactive CD45RA+ and CD45RO+ T-cell populations, Am. J. Transplant. 6, 2580–2591.PubMedCrossRefGoogle Scholar
  16. 16.
    Fazekasova, H., Golshayan, D., Read, J., Tsallios, A., Tsang, J. Y., Dorling, A., George, A. J., Lechler, R. I., Lombardi, G., and Mirenda, V. (2009) Regulation of rat and human T-cell immune response by pharmacologically modified dendritic cells, Transplantation 87, 1617–1628.PubMedCrossRefGoogle Scholar
  17. 17.
    Roelen, D. L., Schuurhuis, D. H., van den Boogaardt, D. E., Koekkoek, K., van Miert, P. P., van Schip, J. J., Laban, S., Rea, D., Melief, C. J., Offringa, R., Ossendorp, F., and Claas, F. H. (2003) Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells, Transplantation 76, 1608–1615.PubMedCrossRefGoogle Scholar
  18. 18.
    Mirenda, V., Berton, I., Read, J., Cook, T., Smith, J., Dorling, A., and Lechler, R. I. (2004) Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation, J. Am. Soc. Nephrol. 15, 987–997.PubMedCrossRefGoogle Scholar
  19. 19.
    Stax, A. M., Gelderman, K. A., Schlagwein, N., Essers, M. C., Kamerling, S. W., Woltman, A. M., and van Kooten, C. (2008) Induction of donor-specific T-cell hyporesponsiveness using dexamethasone-treated dendritic cells in two fully mismatched rat kidney transplantation models, Transplantation 86, 1275–1282.PubMedCrossRefGoogle Scholar
  20. 20.
    Gordon, S. and Taylor, P. R. (2005) Monocyte and macrophage heterogeneity, Nat. Rev. Immunol. 5, 953–964.PubMedCrossRefGoogle Scholar
  21. 21.
    Mosser, D. M. and Edwards, J. P. (2008) Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol. 8, 958–969.PubMedCrossRefGoogle Scholar
  22. 22.
    Vanderheyde, N., Verhasselt, V., Goldman, M., and Willems, F. (1999) Inhibition of human dendritic cell functions by methylprednisolone, Transplantation 67, 1342–1347.PubMedCrossRefGoogle Scholar
  23. 23.
    de Jong, E. C., Vieira, P. L., Kalinski, P., and Kapsenberg, M. L. (1999) Corticosteroids inhibit the production of inflammatory mediators in immature monocyte-derived DC and induce the development of tolerogenic DC3, J. Leukoc. Biol. 66, 201–204.PubMedGoogle Scholar
  24. 24.
    de Vries, I, Lesterhuis, W. J., Scharenborg, N. M., Engelen, L. P., Ruiter, D. J., Gerritsen, M. J., Croockewit, S., Britten, C. M., Torensma, R., Adema, G. J., Figdor, C. G., and Punt, C. J. (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients, Clin. Cancer Res. 9, 5091–5100.PubMedGoogle Scholar
  25. 25.
    Palucka, A. K., Ueno, H., Connolly, J., Kerneis-Norvell, F., Blanck, J. P., Johnston, D. A., Fay, J., and Banchereau, J. (2006) Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity, J. Immunother. 29, 545–557.PubMedCrossRefGoogle Scholar
  26. 26.
    Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G., and Schadendorf, D. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells, Nat. Med. 4, 328–332.PubMedCrossRefGoogle Scholar
  27. 27.
    Emmer, P. M., van der Vlag, J., Adema, G. J., and Hilbrands, L. B. (2006) Dendritic cells activated by lipopolysaccharide after dexamethasone treatment induce donor-specific allograft hyporesponsiveness, Transplantation 81, 1451–1459.PubMedCrossRefGoogle Scholar
  28. 28.
    van Duivenvoorde, L. M., Han, W. G., Bakker, A. M., Louis-Plence, P., Charbonnier, L. M., Apparailly, F., van der Voort, E. I., Jorgensen, C., Huizinga, T. W., and Toes, R. E. (2007) Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms, J. Immunol. 179, 1506–1515.PubMedGoogle Scholar
  29. 29.
    Woltman, A. M., Massacrier, C., De Fijter, J. W., Caux, C., and van Kooten, C. (2002) Corticosteroids prevent generation of CD34+-derived dermal dendritic cells but do not inhibit Langerhans cell development, J. Immunol. 168, 6181–6188.PubMedGoogle Scholar
  30. 30.
    Peche, H., Trinite, B., Martinet, B., and Cuturi, M. C. (2005) Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors, Am. J. Transplant. 5, 255–267.PubMedCrossRefGoogle Scholar
  31. 31.
    Stax, A. M., Crul, C., Kamerling, S. W., Schlagwein, N., van der Geest, R. N., Woltman, A. M., and van Kooten, C. (2008) CD40L stimulation of rat dendritic cells specifically favors the IL-12/IL-10 ratio resulting in a strong T cell stimulatory capacity, Mol. Immunol. 45, 2641–2650.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  1. 1.Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations