Skip to main content

Computing Chromosome Conformation

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

Abstract

The “Chromosome Conformation Capture” (3C) and 3C-related technologies are used to measure physical contacts between DNA segments at high resolution in vivo. 3C studies indicate that genomes are likely organized into dynamic networks of physical contacts between genes and regulatory DNA elements. These interactions are mediated by proteins and are important for the regulation of genes. For these reasons, mapping physical connectivity networks with 3C-related approaches will be essential to fully understand how genes are regulated. The 3C-Carbon Copy (5C) technology can be used to measure chromatin contacts genome-scale within (cis) or between (trans) chromosomes. Although unquestionably powerful, this approach can be challenging to implement without proper understanding and application of publicly available bioinformatics tools. This chapter explains how 5C studies are performed and describes stepwise how to use currently available bioinformatics tools for experimental design, data analysis, and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Severin, J., Waterhouse, A.M., Kawaji, H. et al. (2009) FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biol 10, R39.

    Article  PubMed  Google Scholar 

  2. Kawaji, H., Severin, J., Lizio, M. et al. (2009) The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biol 10, R40.

    Article  PubMed  Google Scholar 

  3. Suzuki, H., Forrest, A.R., van Nimwegen, E. et al. (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41, 553–562.

    Article  PubMed  CAS  Google Scholar 

  4. Berger, S.L. (2007) The complex language of chromatin regulation during transcription. Nature 447, 407–412.

    Article  PubMed  CAS  Google Scholar 

  5. Heard, E., and Bickmore, W. (2007) The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 19, 311–316.

    Article  PubMed  CAS  Google Scholar 

  6. Babu, M.M., Janga, S.C., de Santiago, I. et al. (2008) Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 18, 571–582.

    Article  PubMed  CAS  Google Scholar 

  7. Miele, A., and Dekker, J. (2008) Long-range chromosomal interactions and gene regulation. Mol Biosyst 4, 1046–1057.

    Article  PubMed  CAS  Google Scholar 

  8. Kleinjan, D.A., and van Heyningen, V. (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76, 8–32.

    Article  PubMed  CAS  Google Scholar 

  9. West, A.G., and Fraser, P. (2005) Remote control of gene transcription. Hum Mol Genet 14, R101–R111.

    Article  PubMed  CAS  Google Scholar 

  10. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  11. Wright, M.M., Kim, J., Hock, T.D. et al. (2009) Human heme oxygenase-1 induction by nitro-linoleic acid is mediated by cyclic AMP, AP-1, and E-box response element interactions. Biochem J 422, 353–361.

    Article  PubMed  CAS  Google Scholar 

  12. Vakoc, C., Letting, D.L., Gheldof, N. et al. (2005) Proximity among distant regulatory elements at the beta-Globin locus requires GATA-1 and FOG-1. Mol Cell 17, 453–462.

    Article  PubMed  CAS  Google Scholar 

  13. Tsytsykova, A.V., Rajsbaum, R., Falvo, J.V. et al. (2007) Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers. Proc Natl Acad Sci USA 104, 16850–16855.

    Article  PubMed  CAS  Google Scholar 

  14. Tolhuis, B., Palstra, R.J., Splinter, E. et al. (2002) Looping and Interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10, 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  15. Spilianakis, C.G., Lalioti, M.D., Town, T. et al. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645.

    Article  PubMed  CAS  Google Scholar 

  16. Spilianakis, C.G., and Flavell, R.A. (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  17. Pirozhkova, I., Petrov, A., Dmitriev, P. et al. (2008) A functional role for 4qA/B in the structural rearrangement of the 4q35 region and in the regulation of FRG1 and ANT1 in facioscapulohumeral dystrophy. PLoS One 3, e3389.

    Article  PubMed  Google Scholar 

  18. Palstra, R.J., Tolhuis, B., Splinter, E. et al. (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35, 190–194.

    Article  PubMed  CAS  Google Scholar 

  19. Ott, C.J., Suszko, M., Blackledge, N.P. et al. (2009) A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter. J Cell Mol Med 13, 680–692.

    Article  PubMed  CAS  Google Scholar 

  20. Murrell, A., Heeson, S., and Reik, W. (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36, 889–893.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, Z., and Garrard, W.T. (2005) Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3 boundary sequence spanning 46 kilobases. Mol Cell Biol 25, 3220–3231.

    Article  PubMed  CAS  Google Scholar 

  22. Lim, J.H., Kim, H.G., Park, S.K. et al. (2009) The promoter of the Immunoglobulin J Chain gene receives its authentic enhancer activity through the abutting MEF2 and PU.1 sites in a DNA-looping interaction. J Mol Biol 390, 339–352.

    Article  PubMed  CAS  Google Scholar 

  23. Kabotyanski, E.B., Rijnkels, M., Freeman-Zadrowski, C. et al. (2009) Lactogenic hormonal induction of long-distance interactions between {beta}-casein gene regulatory elements. J Biol Chem 284, 22815–22824.

    Article  PubMed  CAS  Google Scholar 

  24. Jiang, H., and Peterlin, B.M. (2008) Differential chromatin looping regulates CD4 expression in immature thymocytes. Mol Cell Biol 28, 907–912.

    Article  PubMed  CAS  Google Scholar 

  25. Hakim, O., John, S., Ling, J.Q. et al. (2009) Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J Biol Chem 284, 6048–6052.

    Article  PubMed  CAS  Google Scholar 

  26. D’Haene, B., Attanasio, C., Beysen, D. et al. (2009) Disease-causing 7.4 kb cis-regulatory deletion disrupting conserved non-coding sequences and their interaction with the FOXL2 promotor: implications for mutation screening. PLoS Genet 5, e1000522.

    Article  PubMed  Google Scholar 

  27. Chavanas, S., Adoue, V., Mechin, M.C. et al. (2008) Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 3, e3408.

    Article  PubMed  Google Scholar 

  28. Duan, H., Xiang, H., Ma, L. et al. (2008) Functional long-range interactions of the IgH 3 enhancers with the bcl-2 promoter region in t(14;18) lymphoma cells. Oncogene 27, 6720–6728.

    Article  PubMed  CAS  Google Scholar 

  29. Dhar, S.S., Ongwijitwat, S., and Wong-Riley, M.T. (2009) Chromosome conformation capture of all 13 genomic Loci in the transcriptional regulation of the multisubunit bigenomic cytochrome C oxidase in neurons. J Biol Chem 284, 18644–18650.

    Article  PubMed  CAS  Google Scholar 

  30. Brown, J.M., Leach, J., Reittie, J.E. et al. (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172, 177–187.

    Article  PubMed  CAS  Google Scholar 

  31. Barnett, D.H., Sheng, S., Charn, T.H. et al. (2008) Estrogen receptor regulation of carbonic anhydrase XII through a distal enhancer in breast cancer. Cancer Res 68, 3505–3515.

    Article  PubMed  CAS  Google Scholar 

  32. Dekker, J., Rippe, K., Dekker, M. et al. (2002) Capturing chromosome conformation. Science 295, 1306–1311.

    Article  PubMed  CAS  Google Scholar 

  33. Splinter, E., Grosveld, F., and de Laat, W. (2004) 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol 375, 493–507.

    Article  PubMed  CAS  Google Scholar 

  34. Miele, A., Gheldof, N., Tabuchi, T.M. et al. (2006) Mapping chromatin interactions by chromosome conformation capture (3C). In: Current protocols in molecular biology (Ausubel, F. M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, Eds.) pp. 21.11.1–21.11-20, Wiley, Hoboken, NJ.

    Google Scholar 

  35. Miele, A., and Dekker, J. (2009) Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C). Methods Mol Biol 464, 105–121.

    Article  PubMed  Google Scholar 

  36. Abou El Hassan, M., and Bremner, R. (2009) A rapid simple approach to quantify chromosome conformation capture. Nucleic Acids Res 37, e35.

    Article  PubMed  CAS  Google Scholar 

  37. Hagege, H., Klous, P., Braem, C. et al. (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2, 1722–1733.

    Article  PubMed  CAS  Google Scholar 

  38. Dostie, J., Richmond, T.A., Arnaout, R.A. et al. (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  39. Dostie, J., Zhan, Y., and Dekker, J. (2007) Chromosome conformation capture carbon copy technology. Curr Protoc Mol Biol Chapter 21, Unit 21.14.

  40. Dostie, J., and Dekker, J. (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2, 988–1002.

    Article  PubMed  CAS  Google Scholar 

  41. van Berkum, N.L., and Dekker, J. (2009) Determining spatial chromatin organization of large genomic regions using 5C technology. Methods Mol Biol 567, 189–213.

    Article  PubMed  Google Scholar 

  42. Fraser, J., Rousseau, M., Shenker, S. et al. (2009) Chromatin conformation signatures of cellular differentiation. Genome Biol 10, R37.

    Article  PubMed  Google Scholar 

  43. Breslauer, K.J., Frank, R., Blocker, H. et al. (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83, 3746–3750.

    Article  PubMed  CAS  Google Scholar 

  44. Smit, A.F.A., Hubley, R., and Green, P. (1996–2004) RepeatMasker Open-3.0. http://wwwrepeatmaskerorg.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josée Dostie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fraser, J., Rousseau, M., Blanchette, M., Dostie, J. (2010). Computing Chromosome Conformation. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics