Skip to main content

Sequence Analysis of Chromatin Immunoprecipitation Data for Transcription Factors

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

Abstract

Chromatin immunoprecipitation (ChIP) experiments allow the location of transcription factors to be determined across the genome. Subsequent analysis of the sequences of the identified regions allows binding to be localized at a higher resolution than can be achieved by current high-throughput experiments without sequence analysis and may provide important insight into the regulatory programs enacted by the protein of interest. In this chapter we review the tools, workflow, and common pitfalls of such analyses and recommend strategies for effective motif discovery from these data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacob, F., and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3, 318–356.

    Article  PubMed  CAS  Google Scholar 

  2. Ptashne, M., and Hopkins, N. (1968) The operators controlled by the lambda phage repressor. Proc Natl Acad Sci U S A 60, 1282–1287.

    Article  PubMed  CAS  Google Scholar 

  3. Ippen, K., Miller, J.H., Scaife, J. et al. (1968) New controlling element in the Lac operon of E. coli. Nature 217, 825–827.

    Article  PubMed  CAS  Google Scholar 

  4. Liang, J., Yu, L., Yin, J. et al. (2007) Transcriptional repressor and activator activities of SMA-9 contribute differentially to BMP-related signaling outputs. Dev Biol 305, 714–725.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson, G., Hirst, M., Bainbridge, M. et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4, 651–657.

    Article  PubMed  CAS  Google Scholar 

  6. Ren, B., Robert, F., Wyrick, J.J. et al. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309.

    Article  PubMed  CAS  Google Scholar 

  7. Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics 16, 16–23.

    Article  PubMed  CAS  Google Scholar 

  8. Cui, Y., Wang, Q., Stormo, G.D. et al. (1995) A consensus sequence for binding of Lrp to DNA. J Bacteriol 177, 4872–4880.

    PubMed  CAS  Google Scholar 

  9. Berg, O.G., and von Hippel, P.H. (1987) Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J Mol Biol 193, 723–750.

    Article  PubMed  CAS  Google Scholar 

  10. Stormo, G.D., and Fields, D.S. (1998) Specificity, free energy and information content in protein-DNA interactions. Trends Biochem Sci 23, 109–113.

    Article  PubMed  CAS  Google Scholar 

  11. MacIsaac, K.D. (2009) Motifs, binding, and expression: computational investigations of transcriptional regulation. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  12. Djordjevic, M., Sengupta, A.M., and Shraiman, B.I. (2003) A biophysical approach to transcription factor binding site discovery. Genome Res 13, 2381–2390.

    Article  PubMed  CAS  Google Scholar 

  13. Foat, B.C., Morozov, A.V., and Bussemaker, H.J. (2006) Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics 22, e141–e149.

    Article  PubMed  CAS  Google Scholar 

  14. Buck, M.J., Nobel, A.B., and Lieb, J.D. (2005) ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol 6, R97.

    Article  PubMed  Google Scholar 

  15. Johnson, W.E., Li, W., Meyer, C.A. et al. (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A 103, 12457–12462.

    Article  PubMed  CAS  Google Scholar 

  16. Benoukraf, T., Cauchy, P., Fenouil, R. et al. (2009) CoCAS: a ChIP-on-chip analysis suite. Bioinformatics 25, 954–955.

    Article  PubMed  CAS  Google Scholar 

  17. Qi, Y., Rolfe, A., MacIsaac, K.D. et al. (2006) High-resolution computational models of genome binding events. Nat Biotechnol 24, 963–970.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, Y., Liu, T., Meyer, C.A. et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    Article  PubMed  Google Scholar 

  19. Nix, D.A., Courdy, S.J., and Boucher, K.M. (2008) Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics 9, 523.

    Article  PubMed  Google Scholar 

  20. Pavesi, G., Mereghetti, P., Mauri, G. et al. (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32, W199–W203.

    Article  PubMed  CAS  Google Scholar 

  21. Roth, F.P., Hughes, J.D., Estep, P.W. et al. (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16, 939–945.

    Article  PubMed  CAS  Google Scholar 

  22. Bailey, T.L., and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.

    PubMed  CAS  Google Scholar 

  23. Liu, X.S., Brutlag, D.L., and Liu, J.S. (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 20, 835–839.

    PubMed  CAS  Google Scholar 

  24. Romer, K.A., Kayombya, G.R., and Fraenkel, E. (2007) WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches. Nucleic Acids Res 35, W217–W220.

    Article  PubMed  Google Scholar 

  25. Ji, H., Jiang, H., Ma, W. et al. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26, 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  26. Bailey, T.L., Boden, M., Buske, F.A. et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37, W202–W208.

    Article  PubMed  CAS  Google Scholar 

  27. Gordon, D.B., Nekludova, L., McCallum, S. et al. (2005) TAMO: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics 21, 3164–3165.

    Article  PubMed  CAS  Google Scholar 

  28. Nielsen, R., Pedersen, T.A., Hagenbeek, D. et al. (2008) Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22, 2953–2967.

    Article  PubMed  CAS  Google Scholar 

  29. Harbison, C.T., Gordon, D.B., Lee, T.I. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.

    Article  PubMed  CAS  Google Scholar 

  30. Tompa, M., Li, N., Bailey, T.L. et al. (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23, 137–144.

    Article  PubMed  CAS  Google Scholar 

  31. MacIsaac, K.D., Wang, T., Gordon, D.B. et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113.

    Article  PubMed  Google Scholar 

  32. Mahony, S., Auron, P.E., and Benos, P.V. (2007) DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies. PLoS Comput Biol 3, e61.

    Article  PubMed  Google Scholar 

  33. Macisaac, K.D., Gordon, D.B., Nekludova, L. et al. (2006) A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data. Bioinformatics 22, 423–429.

    Article  PubMed  CAS  Google Scholar 

  34. Takusagawa, K.T., and Gifford, D.K. (2004) Negative information for motif discovery. Pac Symp Biocomput 9, 360–371.

    Google Scholar 

  35. Lemay, D.G., and Hwang, D.H. (2006) Genome-wide identification of peroxisome proliferator response elements using integrated computational genomics. J Lipid Res 47, 1583–1587.

    Article  PubMed  CAS  Google Scholar 

  36. Rice, T.K., Schork, N.J., and Rao, D.C. (2008) Methods for handling multiple testing. Adv Genet 60, 293–308.

    Article  PubMed  Google Scholar 

  37. Gardiner-Garden, M., and Frommer, M. (1987) CpG islands in vertebrate genomes. J Mol Biol 196, 261–282.

    Article  PubMed  CAS  Google Scholar 

  38. Sandelin, A., Alkema, W., Engstrom, P. et al. (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32, D91–D94.

    Article  PubMed  CAS  Google Scholar 

  39. Kullback, S., and Leibler, R.A. (1951) On information and sufficiency. Ann Math Statist 22, 79–86.

    Article  Google Scholar 

  40. Habib, N., Kaplan, T., Margalit, H. et al. (2008) A novel Bayesian DNA motif comparison method for clustering and retrieval. PLoS Comput Biol 4, e1000010.

    Article  PubMed  Google Scholar 

  41. Frey, B.J., and Dueck, D. (2007) Clustering by passing messages between data points. Science 315, 972–976.

    Article  PubMed  CAS  Google Scholar 

  42. Wasserman, W.W., Palumbo, M., Thompson, W. et al. (2000) Human-mouse genome comparisons to locate regulatory sites. Nature Genet 26, 225–228.

    Article  PubMed  CAS  Google Scholar 

  43. Xie, X.H., Lu, J., Kulbokas, E.J. et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434, 338–345.

    Article  PubMed  CAS  Google Scholar 

  44. Borneman, A.R., Gianoulis, T.A., Zhang, Z.D.D. et al. (2007) Divergence of transcription factor binding sites across related yeast species. Science 317, 815–819.

    Article  PubMed  CAS  Google Scholar 

  45. Odom, D.T., Dowell, R.D., Jacobsen, E.S. et al. (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nature Genet 39, 730–732.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzie D. MacIsaac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

MacIsaac, K.D., Fraenkel, E. (2010). Sequence Analysis of Chromatin Immunoprecipitation Data for Transcription Factors. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics