Skip to main content

Evaluation of Embryotoxicity Using the Zebrafish Model

  • Protocol
  • First Online:
Drug Safety Evaluation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 691))

Abstract

The embryonic zebrafish model offers the power of whole-animal investigations (e.g., intact organism, functional homeostatic feedback mechanisms, and intercellular signaling) with the convenience of cell culture (e.g., cost- and time-efficient, minimal infrastructure, small quantities of nanomaterial solutions required). The model system overcomes many of the current limitations in rapid to high-throughput screening of drugs/compounds and casts a broad net to evaluate integrated system effects rapidly. Additionally, it is an ideal platform to follow up with targeted studies aimed at the mechanisms of toxic action. Exposures are carried out in 96-well plates so minimal solution volumes are required for the assessments. Numerous morphological, developmental, and behavioral endpoints can be evaluated noninvasively due to the transparent nature of the embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimenko, M.A., Johnson, S.L., et al. (1995) Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121(2), 347–357.

    CAS  PubMed  Google Scholar 

  2. Aparicio, S., Chapman, J., et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297(5585), 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  3. Blechinger, S.R., Warren Jr., J.T., et al. (2002) Developmental toxicology of cadmium in ­living embryos of a stable transgenic zebrafish line. Environ. Health. Perspect. 110(10), 1041–1046.

    Article  CAS  PubMed  Google Scholar 

  4. Busquet, F., Nagel, R., et al. (2008) Development of a new screening assay to identify proteratogenic substances using zebrafish danio rerio embryo combined with an exogenous mammalian metabolic activation system (mDarT). Toxicol. Sci. 104(1), 177–188.

    Article  CAS  PubMed  Google Scholar 

  5. Harper, S.L., Dahl, J.L., et al. (2008) Proactively designing nanomaterials to enhance performance and minimize hazard. Int. J. Nanotechnology 5(1), 124–142.

    Article  CAS  Google Scholar 

  6. Henken, D.B., Rasooly, R.S., et al. (2003) Recent papers on zebrafish and other aquarium fish models. Zebrafish 1, 305–311.

    Google Scholar 

  7. Kimmel, C.B., Ballard, W.W., et al. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310.

    CAS  PubMed  Google Scholar 

  8. Levin, E.D., Swain, H.A., et al. (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol. Teratol. 26(6), 719–723.

    Article  CAS  PubMed  Google Scholar 

  9. Rasooly, R.S., Henken, D., et al. (2003) Genetic and genomic tools for zebrafish research: the NIH zebrafish initiative. Dev. Dyn. 228(3), 490–496.

    Article  CAS  PubMed  Google Scholar 

  10. Rubinstein, A.L. (2003) Zebrafish: from disease modeling to drug discovery. Curr. Opin. Drug Discov. Devel. 6(2), 218–223.

    CAS  PubMed  Google Scholar 

  11. Spitsbergen, J., Kent, M. (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicological Pathology 31, 62–87.

    CAS  Google Scholar 

  12. Usenko, C.Y., Harper, S.L., et al. (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45, 1891–1898.

    Article  CAS  PubMed  Google Scholar 

  13. Usenko, C.Y., Harper, S.L., et al. (2008) Exposure to fullerene C60 elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol. (229), 44–55.

    Google Scholar 

  14. Westerfield, M. (1995) The Zebrafish Book. Eugene, University of Oregon Press.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sinhubber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University where much of the protocols were developed. This work was supported by EPA STAR grant RD-833320 and NIEHS grants ES03850 and ES07060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Tanguay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Truong, L., Harper, S.L., Tanguay, R.L. (2011). Evaluation of Embryotoxicity Using the Zebrafish Model. In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 691. Humana Press. https://doi.org/10.1007/978-1-60761-849-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-849-2_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-186-8

  • Online ISBN: 978-1-60761-849-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics