Skip to main content

Statistical Analysis of Quantitative RT-PCR Results

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 691))

Abstract

Real-time reverse transcription polymerase chain reaction (RT-PCR) represents a benchmark technology in the detection and quantification of mRNA. Yet, accurate results cannot be realized without proper statistical analysis of RT-PCR data. Here, we examine some of the issues concerning RT-PCR experiments that would benefit from rigorous statistical treatment, including normalization, quantification, efficiency estimation, and sample size calculations. Examples are used to illustrate the methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walker, N.J. (2002) Tech.Sight. A technique whose time has come. Science 296, 557–579.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Y., Barbacioru, C., Hyland, F., Xiao, W., Hunkapiller, K.L., Blake, J., Chan, F., Gonzalez, C., Zhang, L., and Samaha, R. (2006) Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics 7, 59.

    Article  PubMed  Google Scholar 

  3. Wong, M.L. and Medrano, J.F. (2005) Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85.

    Article  CAS  PubMed  Google Scholar 

  4. SAS Institute Inc. (2004) SAS/STAT 9.1 User’s Guide. Cary, NC: SAS Institute Inc.

    Google Scholar 

  5. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-CT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  6. Huggett, J., Dheda, K., Bustin, S., and Zumla, A. (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6(4), 279–284.

    Article  CAS  PubMed  Google Scholar 

  7. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), RESEARCH0034.

    Google Scholar 

  8. Pfaffl, M.W., Tichopad, A., Prgomet, C., and Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515.

    Article  CAS  PubMed  Google Scholar 

  9. Abruzzo, L.V., Lee, K.Y., Fuller, A., Silverman, A., Keating, M.J., Medeiros, L.J., and Coombes, K.R. (2005) Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real-time RT-PCR data. BioTechniques 38, 785–792.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen, C.L., Jensen, J.L., and Orntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250.

    Article  CAS  PubMed  Google Scholar 

  11. Szabo, A., Perou, C.M., Karaca, M., Perreard, L., Quackenbush, J.F., and Bernard, P.S. (2004) Statistical modeling for selecting housekeeper genes. Genome Biol. 5, R59.

    Article  PubMed  Google Scholar 

  12. Dean, A. and Voss, D. (1999) Design and Analysis of Experiments, Springer: New York.

    Book  Google Scholar 

  13. Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45.

    Article  CAS  PubMed  Google Scholar 

  14. Pfaffl, M.W., Horgan, G.W., and Dempfle, L. (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36.

    Article  PubMed  Google Scholar 

  15. Fu, W.J., Hu, J., Spencer, T., Carroll, R., and Wu, G. (2006) Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments. Comput. Biol. Chem. 30, 21–26.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, J.S., Reed, A., Chen, F., and Stewart, C.N. (2006) Statistical analysis of real-time PCR data. BMC Bioinform. 7, 85.

    Article  Google Scholar 

  17. Applied Biosystems (2006) Amplification Efficiency of TaqMan® Gene Expression Assays: Application Note.

    Google Scholar 

  18. Peirson, S.N., Butler, J.N., and Foster, R.G. (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 31, e73.

    Article  PubMed  Google Scholar 

  19. Ramakers, C., Ruijter, J.M., Deprez, R.H., and Moorman, A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339(1), 62–66.

    Article  CAS  PubMed  Google Scholar 

  20. Tichopad, A., Dilger, M., Schwarz, G., and Pfaffl, M.W. (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31, e122.

    Article  PubMed  Google Scholar 

  21. Zhao, S. and Fernald, D. (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12(8), 1047–1064.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W. and Saint, D. (2002) Validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 294(2), 347–353.

    Article  CAS  PubMed  Google Scholar 

  23. Tichopad, A., Dzidic A., and Pfaffl, M.W. (2002) Improving quantitative real-time RT-PCR reproducibility by boosting primer-linked amplification efficiency. Biotechnol. Lett. 24(24), 2053–2056.

    Article  CAS  Google Scholar 

  24. Rutledge, R.G. (2004) Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Res. 32(22), e178.

    Article  CAS  PubMed  Google Scholar 

  25. Khan-Malek, R. (2007) Application of logistic modeling to estimate RT-PCR efficiency. Preclinical and Research Biostatistics Report GV07053-EN-E01. Sanofi-aventis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix 1. SAS Code to Select an Optimum Housekeeping Gene Based on a Minimum F-statistic

data table2;

input ain dose$$ gene$$ Ct;

cards;

1 A HK001 20.30

2 A HK001 20.57

3 A HK001 20.54

4 A HK001 20.20

5 A HK001 20.20

.

Some data omitted for brevity

.

23 E HK002 20.07

24 E HK002 20.10

25 E HK002 20.25

;

proc sort;

by gene;

run;

ods listing close;

ods output OverallANOVA=ANOVA;

proc glm;

by gene;

class dose;

model Ct=dose;

run;

ods listing;

data ANOVA; set ANOVA;

if Source=’Model’;

proc print;

var gene FValue;

run;

Appendix 2. SAS Code to Perform the Relative Quantification Analysis Using ANOVA Methodology

data table6;

input ain treatment$$ gene$$ Ct;

cards;

1 Control TG001 23.22

1 Control TG001 23.34

1 Control TG001 23.12

2 Control TG001 24.06

2 Control TG001 24.15

2 Control TG001 24.15

.

Some data omitted for brevity

.

8 Treated HK002 20.10

8 Treated HK002 20.07

8 Treated HK002 20.10

;

proc summary nway;

class ain treatment gene;

var Ct;

output out=out mean=;

run;

proc sort data=out;

by gene;

run;

proc print data=out;

run;

*∼∼∼ The macro ‘loop’ allows Ct calculations

for all the genes in the data set ∼∼∼*;

%macro loop(gene);

proc mixed data=out;

where gene in (“HK002”,”&gene”);

class treatment gene;

model Ct=treatment*gene;

lsmeans treatment*gene;

*∼∼∼ The ‘e’ option for the ‘estimate’ statement allows a check of the linear combination, which is dependent on the treatment names ∼∼∼*;

estimate “delta delta Ct for &gene” treatment*gene 1 -1 -1 1 / cl e;

*∼∼∼ For an efficiency corrected estimate of the ratio, use the estimate statement below instead ∼∼∼*;

* estimate “efficiency corrected for &gene” treatment*gene -.8875 1.8875 -1 / e;

ods output estimates=estimates;

title “&gene”;

run;

%mend loop;

*∼∼∼ For additional target genes, simply add lines below ∼∼∼*;

%loop(TG001);

%loop(TG002);

Appendix 3. SAS Code to Perform the Four-Parameter Logistic Model Fit

data raw_curve;

input x FL;

cards;

1 -0.00576

2 -0.00568

3 0.00166

Some data omitted for brevity

.

48 5.91043

49 5.95599

50 5.90091

;

data log_curve; set raw_curve;

logFL=log10(FL); * <==== notice log10 ;

ods listing close;

proc nlin method=newton;

parms a=-10 to 0 by 1

b=0 to 5 by 1

c=25 to 30 by 1

d=1 to 3 by 1;

model logFL = a + b /(1+exp((c-x)/d));

ods output parameterestimates=pe(keep=parameter estimate);

output out=out p=p;

run;

ods listing;

proc transpose data=pe out=est(rename=(col1=a col2=b col3=c col4=d));

var estimate;

run;

data est; set est;

x=c;

slope=(b/d)*(exp((c-x)/d))/((1+2*exp((c-x)/d))+exp(2*(c-x)/d));

E=10**slope;

run;

proc print data=est;

run;

Appendix 4. SAS Code to Perform the Sample Size Calculations

*∼∼∼ To calculate sample size ∼∼∼*;

proc power;

twosamplemeans

meandiff = 1

stddev = 0.40 0.45 0.50

power = 0.8

npergroup =.;

run;

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Khan-Malek, R., Wang, Y. (2011). Statistical Analysis of Quantitative RT-PCR Results. In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 691. Humana Press. https://doi.org/10.1007/978-1-60761-849-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-849-2_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-186-8

  • Online ISBN: 978-1-60761-849-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics