Skip to main content

Protocols and Applications of Cellular Metabolomics in Safety Studies Using Precision-Cut Tissue Slices and Carbon 13 NMR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 691))

Abstract

Numerous xenobiotics are toxic to human and animal cells by interacting with their metabolism, but the precise metabolic step affected and the biochemical mechanism behind such a toxicity often remain unknown. In an attempt to reduce the ignorance in this field, we have developed a new approach called cellular metabolomics. This approach, developed in vitro, provides a panoramic view not only of the pathways involved in the metabolism of physiologic substrates of any normal or pathologic human or animal cell but also of the beneficial and adverse effects of xenobiotics on these metabolic pathways. Unlike many cell lines, precision-cut tissue slices, for which there is a renewed interest, remain metabolically differentiated for at least 24–48 h and allow to study the effect of xenobiotics during short-term and long-term incubations. Cellular metabolomics (or cellular metabonomics), which combines enzymatic and carbon 13 NMR measurements with mathematical modeling of metabolic pathways, is illustrated in this brief chapter for studying the effect of insulin on glucose metabolism in rat liver precision-cut slices, and of valproate on glutamine metabolism in human renal cortical precision-cut slices. The use of very small amounts of test compounds allows to predict their toxic effect and eventually their beneficial effects very early in the research and development processes. Cellular metabolomics is complementary to other omics approaches, but, unlike them, provides functional and dynamic pieces of information by measuring enzymatic fluxes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Warburg, O. (1923) Versuche an uberiebendem Carcirnomgewebe. Biochem. Z. 142, 317–333.

    CAS  Google Scholar 

  2. Berry, M. N., and Friend, D. S. (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell. Biol. 43, 506–520.

    Article  CAS  PubMed  Google Scholar 

  3. Krumdieck, C. L., dos Santos, J. E., and Ho, K. J. (1980) A new instrument for the rapid preparation of tissue slices. Anal. Biochem. 104, 118–123.

    Article  CAS  PubMed  Google Scholar 

  4. Hirsch, G. H. (1976) Differential effects of nephrotoxic agents on renal transport and metabolism by use of in vitro techniques. Environ. Health Perspect. 15, 89–99.

    Article  CAS  PubMed  Google Scholar 

  5. Bach, P., and Lock, E. (1985) The use of renal tissue slices, perfusion and infusion techniques to assess nephrotoxicity related changes. In: (Bach, P. H., and Lock, E. A., eds.) Nephrotoxicity Assessment and Pathogenesis. Monographs of Applied Toxicology. Vol. 1. New-York: Wiley, pp. 505–518.

    Google Scholar 

  6. Berndt, W. O. (1987) Renal slices and perfusion. In: (Bach, P. H., and Lock, E. A., eds.) Nephrotoxicity: The Experimental and Clinical Situation. Martin Nijhoff Publishers, Boston, MA, USA pp. 301–316.

    Google Scholar 

  7. Bach, P. H., Vickers, A. E. M., Fisher, R., et al. (1996) The use of tissue slices for pharmacotoxicology studies. Altern. Lab. Anim. 24, 893–923.

    Google Scholar 

  8. Parrish, A. R., Gandolfi, A. J., and Brendel, K. (1995) Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci. 57, 1887–1901.

    Article  CAS  PubMed  Google Scholar 

  9. Lerche-Langrand, C., and Toutain, H. J. (2000) Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 153, 221–253.

    Article  CAS  PubMed  Google Scholar 

  10. Vickers, A. E., and Fisher, R. L. (2004) Organ slices for the evaluation of human drug toxicity. Chem. Biol. Interact. 150, 87–96.

    Article  CAS  PubMed  Google Scholar 

  11. Vickers, A. E., and Fisher, R. L. (2005) Precision-cut organ slices to investigate target organ injury. Expert Opin. Drug Metab. Toxicol. 1, 687–699.

    Article  CAS  PubMed  Google Scholar 

  12. De Graaf, I. A. M., Groothuis, G. M. M., and Olinga, P. (2007) Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin. Drug Metab. Toxicol. 3, 879–898.

    Article  PubMed  Google Scholar 

  13. Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  14. Lamprecht, W., and Trautchold, I. (1974) Adenosine-5′-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: (Bergmeyer, H., ed.) Methods of Enzymatic Analysis. Vol. 4. New York: Academic Press, pp. 2101–2110.

    Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  16. Bergmeyer, H. U., and Bernt, E. (1974) Lactate dehydrogenase: UV assay with pyruvate and NADH. In: (Bergmeyer, H., ed.) Methods of Enzymatic Analysis. Vol. 2. New-York: Academic Press, pp. 574–579.

    Google Scholar 

  17. Baverel, G., Bonnard, M., D’Armagnac de Castanet, E., and Pellet, M. (1978) Lactate and pyruvate metabolism in isolated renal tubules of normal dogs. Kidney Int. 14, 567–575.

    Article  CAS  PubMed  Google Scholar 

  18. Baverel, G., and Lund, P. (1979) A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem. J. 184, 599–606.

    CAS  PubMed  Google Scholar 

  19. Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R. (1983) An improved sequence for broadband decoupling: Waltz 16. J. Magn. Reson. 52, 335–338.

    CAS  Google Scholar 

  20. Howarth, O. W., and Lilley, D. M. J. (1978) Carbon-13-NMR of peptides and proteins. Prog. NMR Spectrosc. 12, 1–40.

    Article  CAS  Google Scholar 

  21. Canioni, P., Alger, J. R., and Shulman, R. G. (1983) Natural abundance Carbon-13 nuclear magnetic resonance spectroscopy of liver and adipose tissue of the living rat. Biochemistry 22, 4974–4980.

    Article  CAS  PubMed  Google Scholar 

  22. Martin, G., Chauvin M.F., Dugelay S., and Baverel G. (1994) Non-steady state model applicable to NMR studies for calculating flux rates in glycolysis, gluconeogenesis, and citric acid cycle. J. Biol. Chem. 269, 26034–26039.

    CAS  PubMed  Google Scholar 

  23. Martin G., Chauvin, M. F., and Baverel, G. (1997) Model applicable to NMR studies for calculating flux rates in five cycles involved in glutamate metabolism. J. Biol. Chem. 272, 4717–4728.

    Article  CAS  PubMed  Google Scholar 

  24. Dugelay, S., Chauvin, M. F., and Megnin-Chanet, F., et al. (1999) Acetate stimulates flux through the tricarboxylic acid cycle in rabbit renal proximal tubules synthesizing glutamine from alanine: a 13C NMR study. Biochem. J. 342, 555–566.

    Article  CAS  PubMed  Google Scholar 

  25. Conjard, A., Dugelay, S., Chauvin, M. F., Durozard, D., Baverel, G., and Martin, G. (2002) The anaplerotic substrate alanine stimulates acetate incorporation into glutamate and glutamine in rabbit kidney tubules. A 13C NMR study. J. Biol. Chem. 277, 29444–29454.

    Article  CAS  PubMed  Google Scholar 

  26. Vincent, N., Martin, G., and Baverel, G. (1992) Glycine, a new regulator of glutamine metabolism in isolated rat-liver cells. Biochim. Biophys. Acta. 1175, 13–20.

    Article  CAS  PubMed  Google Scholar 

  27. Vercoutere, B., Durozard, D., Baverel, G., and Martin, G. (2004) Complexity of glutamine metabolism in kidney tubules from fed and fasted rats. Biochem. J. 378, 485–495.

    Article  CAS  PubMed  Google Scholar 

  28. Simon, D., and Penry, J. K. (1975) Sodium di-N-propylacetate (DPA) in the treatment of epilepsy. A review. Epilepsia 16, 549–573.

    Article  CAS  Google Scholar 

  29. Coulter, D. L., and Allen, R. J. (1980) Secondary hyperammonaemia: a possible mechanism for valproate encephalopathy. Lancet 1, 1310–1311.

    Article  CAS  PubMed  Google Scholar 

  30. Powell-Jackson, P. R., Tredger, J. M., and Williams, R. (1984) Hepatotoxicity to sodium valproate: a review. Gut 25, 673–681.

    Article  CAS  PubMed  Google Scholar 

  31. Warter, J. M., Marescaux, C., Chabrier, G., Rumbach, L., Micheletti, B., and Imler, M. (1984) Renal glutamine metabolism in man during treatment with sodium valproate. Rev. Neurol. (Paris) 140, 370–371.

    CAS  Google Scholar 

  32. Ferrier, B., Martin, M., and Baverel, G. (1988) Valproate-induced stimulation of renal ammonia production and excretion in the rat. J. Clin. Chem. Clin. Biochem. 26, 65–67.

    CAS  PubMed  Google Scholar 

  33. Elhamri, M., Ferrier, B., Martin, M., and Baverel, G. (1993) Effect of valproate, sodium 2-propyl-4-pentenoate and sodium 2-propyl-2-pentenoate on renal substrate uptake and ammoniagenesis in the rat. J. Pharmacol. Exp. Ther. 266, 89–96.

    CAS  PubMed  Google Scholar 

  34. Vittorelli, A., Gauthier, C., Michoudet, C., Martin, G., and Baverel, G. (2005) Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study. Biochem. J. 387, 825–834.

    Article  CAS  PubMed  Google Scholar 

  35. Durozard, D, and Baverel, G. (1987) Gas chromatographic method for the measurement of sodium valproate utilization by kidney tubules. J. Chromatogr. 414, 460–464.

    Article  CAS  PubMed  Google Scholar 

  36. Durozard, D., Martin, G., and Baverel, G. (1991) Valproate-induced alterations of coenzyme A and coenzyme A ester concentrations in human kidney tubules metabolizing glutamine. Contrib. Nephrol. 92, 103–108.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Claudie Pinteur, Rémi Nazaret, and Lara Koneckny for their technical assistance as well as Claire Morel for secretarial assistance. This work was supported by grants from the European Commission [project numbers: BIO4-CT97-2145 (Euroslice) and STREP 032731 (CellNanoTox)] and from INSERM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baverel, G. et al. (2011). Protocols and Applications of Cellular Metabolomics in Safety Studies Using Precision-Cut Tissue Slices and Carbon 13 NMR. In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 691. Humana Press. https://doi.org/10.1007/978-1-60761-849-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-849-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-186-8

  • Online ISBN: 978-1-60761-849-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics