Skip to main content

Confocal Imaging of Fluorescently Labeled Proteins in the Drosophila Larval Neuromuscular Junction

  • Protocol
  • First Online:
  • 7368 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1075))

Abstract

The Drosophila larval neuromuscular junction (NMJ) consists of a presynaptic motor neuron terminal and a postsynaptic muscle cell that offer an accessible and popular model system for the analysis of synaptic growth and function. I describe techniques for visualizing fluorescently labeled proteins within dissected, formaldehyde-fixed second to third instar larval NMJs. In addition, I present two strategies using confocal microscopy to solve a particular problem in NMJ analysis: distinguishing fluorescence in the presynaptic nerve terminal from that in the adjacent postsynaptic muscle cell. This problem arises from the fact that the membrane of the muscle cell envelops the motor neuron terminal with a convoluted process called the subsynaptic reticulum, obscuring the boundary between muscle and nerve. A first strategy entails taking thin optical sections through synaptic boutons to capture a cross section of the nerve terminal, and a second strategy involves visualizing epitope-tagged isoforms of particular proteins that have been transgenically expressed in either the nerve or the muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Johansen J, Halpern ME, Johansen KM, Keshishian H (1989) Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. J Neurosci 9(2):710–725

    CAS  PubMed  Google Scholar 

  2. Hoang B, Chiba A (2001) Single-cell analysis of Drosophila larval neuromuscular synapses. Dev Biol 229(1):55–70

    Article  CAS  PubMed  Google Scholar 

  3. Chiba A (1999) Early development of the Drosophila neuromuscular junction: a model for studying neuronal networks in development. Int Rev Neurobiol 43:1–24

    Article  CAS  PubMed  Google Scholar 

  4. Koh YH, Gramates LS, Budnik V (2000) Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc Res Tech 49(1):14–25

    Article  CAS  PubMed  Google Scholar 

  5. Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20(5):917–925

    Article  CAS  PubMed  Google Scholar 

  6. Umbach JA, Saitoe M, Kidokoro Y, Gundersen CB (1998) Attenuated influx of calcium ions at nerve endings of csp and shibire mutant Drosophila. J Neurosci 18(9):3233–3240

    CAS  PubMed  Google Scholar 

  7. Zito K, Parnas D, Fetter RD, Isacoff EY, Goodman CS (1999) Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22(4):719–729

    Article  CAS  PubMed  Google Scholar 

  8. Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426(6966):559–563

    Article  CAS  PubMed  Google Scholar 

  9. Sone M, Suzuki E, Hoshino M, Hou D, Kuromi H, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C (2000) Synaptic development is controlled in the periactive zones of Drosophila synapses. Development 127(19):4157–4168

    CAS  PubMed  Google Scholar 

  10. Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS (2000) Highwire regulates synaptic growth in Drosophila. Neuron 26(2):313–329

    Article  CAS  PubMed  Google Scholar 

  11. Coyle IP, Koh YH, Lee WC, Slind J, Fergestad T, Littleton JT, Ganetzky B (2004) Nervous wreck, an SH3 adaptor protein that interacts with Wsp, regulates synaptic growth in Drosophila. Neuron 41(4):521–534

    Article  CAS  PubMed  Google Scholar 

  12. Kawasaki F, Zou B, Xu X, Ordway RW (2004) Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila. J Neurosci 24(1):282–285

    Article  CAS  PubMed  Google Scholar 

  13. Zhai RG, Bellen HJ (2004) The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19:262–270

    Article  Google Scholar 

  14. Winckler B, Mellman I (1999) Neuronal polarity: controlling the sorting and diffusion of membrane components. Neuron 23(4):637–640

    Article  CAS  PubMed  Google Scholar 

  15. Roos J, Kelly RB (1999) The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr Biol 9(23):1411–1414

    Article  CAS  PubMed  Google Scholar 

  16. Fergestad T, Broadie K (2001) Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci 21(4):1218–1227

    CAS  PubMed  Google Scholar 

  17. Atwood HL, Govind CK, Wu CF (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J Neurobiol 24(8):1008–1024

    Article  CAS  PubMed  Google Scholar 

  18. Ashburner M (1989) Drosophila. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  19. Sullivan W, Ashburner M, Hawley RS (2000) Drosophila protocols, vol xiv. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 697

    Google Scholar 

  20. Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43(2):207–219

    Article  CAS  PubMed  Google Scholar 

  21. Harden N, Lee J, Loh HY, Ong YM, Tan I, Leung T, Manser E, Lim L (1996) A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol 16(5):1896–1908

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Woods DF, Wu JW, Bryant PJ (1997) Localization of proteins to the apico-lateral junctions of Drosophila epithelia. Dev Genet 20(2):111–118

    Article  CAS  PubMed  Google Scholar 

  23. Dubreuil RR, Maddux PB, Grushko TA, MacVicar GR (1997) Segregation of two spectrin isoforms: polarized membrane-binding sites direct polarized membrane skeleton assembly. Mol Biol Cell 8(10):1933–1942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Budnik V, Koh YH, Guan B, Hartmann B, Hough C, Woods D, Gorczyca M (1996) Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17(4):627–640

    Article  CAS  PubMed  Google Scholar 

  25. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14(4):367–379

    Article  CAS  PubMed  Google Scholar 

  26. McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20(8):384–391

    Article  CAS  PubMed  Google Scholar 

  27. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  28. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster, vol xvii, 2nd edn. Springer, Berlin, p 405

    Google Scholar 

  29. Littleton JT, Bellen HJ, Perin MS (1993) Expression of synaptotagmin in Drosophila reveals transport and localization of synaptic vesicles to the synapse. Development 118(4):1077–1088

    CAS  PubMed  Google Scholar 

  30. Zinsmaier KE, Hofbauer A, Heimbeck G, Pflugfelder GO, Buchner S, Buchner E (1990) A cysteine-string protein is expressed in retina and brain of Drosophila. J Neurogenet 7(1):15–29

    Article  CAS  PubMed  Google Scholar 

  31. Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17(4):641–654

    Article  CAS  PubMed  Google Scholar 

  32. DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, Goodman CS (2001) Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412(6845):449–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am indebted to Barry Ganetzky, Troy Littleton, Tim Fergestad, and Young Ho Koh for teaching me the methodology of Drosophila molecular biology and confocal microscopy. I thank Steve Paddock and Sean Carroll for generously providing time, expertise, and a confocal microscope. This work was supported by NIH grant NS15390 to B. Ganetzky.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coyle, I.P. (2014). Confocal Imaging of Fluorescently Labeled Proteins in the Drosophila Larval Neuromuscular Junction. In: Paddock, S. (eds) Confocal Microscopy. Methods in Molecular Biology, vol 1075. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60761-847-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-847-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-58829-351-0

  • Online ISBN: 978-1-60761-847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics