Skip to main content

Vital Imaging of Multicellular Spheroids

  • Protocol
  • First Online:
Confocal Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1075))

  • 7305 Accesses

Abstract

Cell behavior is significantly different in two-dimensional and three-dimensional culture conditions, and a number of methods have been developed to establish and study three-dimensional cellular arrays in vitro. When grown under nonadherent conditions, many types of cells form structures called multicellular spheroids (MCSs), which have been popular models to study cell behavior in a three-dimensional environment. The histoarchitecture of MCSs derived from malignant cells resembles that of tumors, and there is rapidly increasing interest in using these structures to more accurately understand the dynamics of cancer cells in situ, including their responses to chemotherapeutics. Confocal microscopy is an extremely useful method to investigate cell behavior in MCSs due to its ability to more clearly image fluorescent probes at some depth in three-dimensional structures. This chapter describes some basic approaches toward visualizing a variety of fluorescent probes in MCSs.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-60761-847-8_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunz-Schughart LA (1999) Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int 23(3):157–161

    Article  CAS  PubMed  Google Scholar 

  2. Mueller-Klieser W (1987) Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 113(2):101–122

    Article  CAS  PubMed  Google Scholar 

  3. Mueller-Klieser W (2000) Tumor biology and experimental therapeutics. Crit Rev Oncol Hematol 36(2–3):123–139

    Article  CAS  PubMed  Google Scholar 

  4. Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79(1):1–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mueller-Klieser W (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273(4 Pt 1):C1109–C1123

    CAS  PubMed  Google Scholar 

  6. Kobayashi H et al (1993) Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci U S A 90(8):3294–3298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Olive PL, Banath JP, Evans HH (1993) Cell killing and DNA damage by etoposide in Chinese hamster V79 monolayers and spheroids: influence of growth kinetics, growth environment and DNA packaging. Br J Cancer 67(3):522–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Olive PL, Durand RE (1994) Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev 13(2):121–138

    Article  CAS  PubMed  Google Scholar 

  9. Sakata K et al (1994) Resistance to verapamil sensitization of multidrug-resistant cells grown as multicellular spheroids. Int J Cancer 59(2):282–286

    Article  CAS  PubMed  Google Scholar 

  10. Graham CH et al (1994) Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst 86(13):975–982

    Article  CAS  PubMed  Google Scholar 

  11. LaRue KE, Bradbury EM, Freyer JP (1998) Differential regulation of cyclin-dependent kinase inhibitors in monolayer and spheroid cultures of tumorigenic and nontumorigenic fibroblasts. Cancer Res 58(6):1305–1314

    CAS  PubMed  Google Scholar 

  12. Timmins NE et al (2004) Identification of three gene candidates for multicellular resistance in colon carcinoma. Cytotechnology 46(1):9–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gaedtke L et al (2007) Proteomic analysis reveals differences in protein expression in spheroid versus monolayer cultures of low-passage colon carcinoma cells. J Proteome Res 6(11):4111–4118

    Article  CAS  PubMed  Google Scholar 

  14. Grun B et al (2009) Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif 42(2):219–228

    Article  CAS  PubMed  Google Scholar 

  15. Ward JP, King JR (2003) Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math Biosci 181(2):177–207

    Article  CAS  PubMed  Google Scholar 

  16. Martin C et al (2003) The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models. Br J Cancer 89(8):1581–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wartenberg M et al (1998) Development of an intrinsic P-glycoprotein-mediated doxorubicin resistance in quiescent cell layers of large, multicellular prostate tumor spheroids. Int J Cancer 75(6):855–863

    Article  CAS  PubMed  Google Scholar 

  18. Xing H et al (2007) Knock-down of P-glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Rep 17(1):117–122

    CAS  PubMed  Google Scholar 

  19. Friedrich J et al (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324

    Article  CAS  PubMed  Google Scholar 

  20. Durand RE, Olive PL (2001) Resistance of tumor cells to chemo- and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods Cell Biol 64:211–233

    Article  CAS  PubMed  Google Scholar 

  21. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Guo X et al (2001) Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis 22(14):3067–3075

    Article  CAS  PubMed  Google Scholar 

  23. Lemasters JJ et al (1999) Confocal microscopy of the mitochondrial permeability transition in necrotic and apoptotic cell death. Biochem Soc Symp 66:205–222

    CAS  PubMed  Google Scholar 

  24. Adhami VM et al (2003) Activation of prodeath Bcl-2 family proteins and mitochondrial apoptosis pathway by sanguinarine in immortalized human HaCaT keratinocytes. Clin Cancer Res 9(8):3176–3182

    CAS  PubMed  Google Scholar 

  25. Adhami VM et al (2004) Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther 3(8):933–940

    CAS  PubMed  Google Scholar 

  26. Ding Z et al (2002) The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem Pharmacol 63(8):1415–1421

    Article  CAS  PubMed  Google Scholar 

  27. Weerasinghe P, Hallock S, Liepins A (2001) Bax, Bcl-2, and NF-kappaB expression in sanguinarine induced bimodal cell death. Exp Mol Pathol 71(1):89–98

    Article  CAS  PubMed  Google Scholar 

  28. Slaninova I et al (2001) Interaction of benzo[c]phenanthridine and protoberberine alkaloids with animal and yeast cells. Cell Biol Toxicol 17(1):51–63

    Article  CAS  PubMed  Google Scholar 

  29. Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  PubMed  Google Scholar 

  30. Collins TJ et al (2000) Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J 347(Pt 2):593–600

    Article  CAS  PubMed  Google Scholar 

  31. Slater EC (1967) Application of inhibitors and uncouplers for a study of oxidative phosphorylation. Meth Enzymol X:48–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Oliveira, P.J., Perkins, E.L., Holy, J. (2014). Vital Imaging of Multicellular Spheroids. In: Paddock, S. (eds) Confocal Microscopy. Methods in Molecular Biology, vol 1075. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60761-847-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-847-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-58829-351-0

  • Online ISBN: 978-1-60761-847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics