Confocal Imaging and Three-Dimensional Visualization of Thick Autofluorescent Specimens

  • Angela V. Klaus
  • Valerie Schawaroch
  • Kevin J. Frischmann
Part of the Methods in Molecular Biology book series (MIMB, volume 1075)


Three-dimensional (3-D) rendering methods (maximum intensity projection, alpha blending, and isosurface rendering) are described for the visualization of thick, autofluorescent, arthropod cuticular structures (e.g., Drosophila melanogaster external genitalic structures) imaged by confocal laser scanning microscopy (CLSM). Additionally, specimen mounting and data collection strategies for thick specimens are described. Axial aberration artifacts are discussed in the context of these methods because of the critical roles they play in the quality of final 3-D images.

Key words

Confocal microscopy Spherical aberration Drosophila Maximum intensity projection Volume rendering Surface rendering Three-dimensional reconstruction Volume visualization Axial aberration 



VS acknowledges the generous support for this work from a National Science Foundation award (DEB0075360), two PSC-CUNY awards (60052-34-35 and 67621-00-36), and a Eugene M. Lang Junior Faculty Research Fellowship. VS also wishes to thank Dean Myrna Chase of the Weisman School of Arts and Sciences of Baruch College for reassigned time.


  1. 1.
    Paddock SW (1999) An introduction to confocal imaging. In: Paddock SW (ed) Confocal microscopy: methods and protocols. Humana Press, Totowa, NJ, pp 1–34Google Scholar
  2. 2.
    Schawaroch V, Grimaldi D, Klaus AV (2005) Focusing on morphology: applications and implications of confocal laser scanning microscopy (Diptera: Campichoetidae, Camillidae, and Drosophilidae). Proc Entomol Soc Wash 107:323–335Google Scholar
  3. 3.
    Klaus AV, Kulasekera VL, Schawaroch V (2003) Three-dimensional visualization of insect morphology using confocal laser scanning microscopy. J Microsc 212:107–121PubMedCrossRefGoogle Scholar
  4. 4.
    Zill S, Frazier SF, Neef D, Quimby L, Carney M, Dicaprio R, Thuma J, Norton M (2000) Three-dimensional graphic reconstruction of the insect exoskeleton through confocal imaging of endogenous fluorescence. Microsc Res Tech 48:367–384PubMedCrossRefGoogle Scholar
  5. 5.
    Galassi DMP, De Laurentis P, Giammatteo M (1998) Integumental morphology in copepods: assessment by confocal laser scanning microscopy (CLSM). Fragmenta Entomologica (Roma) 30:79–92Google Scholar
  6. 6.
    Diaspro A, Federici F, Robello M (2002) Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl Optics 41:685–690CrossRefGoogle Scholar
  7. 7.
    de Grauw CJ, Frederix PLTM, Gerritsen HC (2002) Aberrations and penetration in in-depth confocal and two-photon microscopy. In: Diaspro A (ed) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, New York, NY, pp 153–169Google Scholar
  8. 8.
    Can A, Al-Kofahi O, Lasek S, Szarowski DH, Turner JN, Roysam B (2003) Attenuation correction in confocal laser microscopes: a novel two-view approach. J Microsc 211:67–79PubMedCrossRefGoogle Scholar
  9. 9.
    Wu H-X, Ji L (2005) Fully automated intensity compensation for confocal microscope images. J Microsc 220:9–19PubMedCrossRefGoogle Scholar
  10. 10.
    Schroeder W, Martin K, Lorensen B (1998) The visualization toolkit, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  11. 11.
    Porter T, Duff T (1984) Compositing digital images. Comput Graph 18:253–259CrossRefGoogle Scholar
  12. 12.
    Lorensen W, Cline H (1987) Marching cubes: a high resolution 3d surface reconstruction algorithm. Comput Graph 21:163–169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Angela V. Klaus
    • 1
  • Valerie Schawaroch
    • 2
    • 3
  • Kevin J. Frischmann
    • 4
  1. 1.Department of BiologySeton Hall UniversitySouth OrangeUSA
  2. 2.Department of Natural SciencesBaruch CollegeNew YorkUSA
  3. 3.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
  4. 4.Bitplane Inc.Saint PaulUSA

Personalised recommendations