Skip to main content

Peptide Arrays with a Chip

  • Protocol
  • First Online:
Book cover Small Molecule Microarrays

Abstract

Today, lithographic methods enable combinatorial synthesis of >50,000 oligonucleotides per cm2, an advance that has revolutionized the whole field of genomics. A similar development is expected for the field of proteomics, provided that affordable, very high-density peptide arrays are available. However, peptide arrays lag behind oligonucleotide arrays. This is mainly due to the monomer-by-monomer repeated consecutive coupling of 20 different amino acids associated with lithography, which adds up to an excessive number of coupling cycles. A combinatorial synthesis based on electrically charged solid amino acid particles resolves this problem. A computer chip consecutively addresses the different charged particles to a solid support, where, when completed, the whole layer of solid amino acid particles is melted at once. This frees hitherto immobilized amino acids to couple all 20 different amino acids in one single coupling reaction to the support. The method should allow for the translation of entire genomes into a set of overlapping peptides to be used in proteome research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 85, 2149–54.

    Article  CAS  Google Scholar 

  2. Frank, R. (1992) Spot synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–32.

    Article  CAS  Google Scholar 

  3. Frank, R. (2002) The SPOT synthesis technique – synthetic peptide arrays on membrane supports – principles and applications. Journal of Immunological Methods 267, 13–26.

    Article  PubMed  CAS  Google Scholar 

  4. Hilpert, K., Winkler, D. F. H., and Hancock, R. E. W. (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nature Protocols 2, 1333–49.

    Article  PubMed  CAS  Google Scholar 

  5. Frank, R. (2002) High density peptide microarrays: emerging tools for functional genomics and proteomics. Combinatorial Chemistry & High Throughput Screening 5, 429–40.

    Article  CAS  Google Scholar 

  6. Eichler, J. (2005) Synthetic peptide arrays and peptide combinatorial libraries for the exploration of protein–ligand interactions and the design of protein inhibitors. Combinatorial Chemistry & High Throughput Screening 8, 135–43.

    Article  CAS  Google Scholar 

  7. Min, D-H., and Mrksich, M. (2004) Peptide arrays: towards routine implementation. Current Opinion in Chemical Biology 8, 554–8.

    Article  PubMed  CAS  Google Scholar 

  8. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–73.

    Article  PubMed  CAS  Google Scholar 

  9. Pellois, J. P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E., and Gao, X. (2002) Individually addressable parallel peptide synthesis on a microchip. Nature Biotechnology 20, 922–6.

    Article  PubMed  CAS  Google Scholar 

  10. Stadler, V., Felgenhauer, T., Beyer, M., Fernandez, S., Leibe, K., Güttler, S., Gröning, M., König, K., Torralba, G., Hausmann, M., Lindenstruth, V., Nesterov, A., Block, I., Pipkorn, R., Poustka, A., Bischoff, F. R., and Breitling, F. (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angewandte Chemie (International ed. in English) 47, 7132–35.

    Article  CAS  Google Scholar 

  11. Beyer, M., Nesterov, A., Block, I., König, K., Felgenhauer, T., Fernandez, S., Leibe, K., Torralba, G., Hausmann, M., Trunk, U., Lindenstruth, V., Bischoff, F. R., Stadler, V., and Breitling, F. (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science 318, 1888.

    Article  PubMed  CAS  Google Scholar 

  12. Fmoc solid phase peptide synthesis – A practical approach (Eds.: W. C. Chan, P. D. White), Oxford University Press, Oxford, 2000, pp. 41–76.

    Google Scholar 

  13. Kawagishi, Y., Ishida, Y., and Ishikawa, K. (1981) Metal complexes for use in developers for electrostatic images, charge control function. US patent application 4404271A1.

    Google Scholar 

  14. Stadler, V., Beyer, M., König, K., Nesterov, A., Torralba, G., Lindenstruth, V., Hausmann, M., Bischoff, F. R., and Breitling, F. (2007) Multifunctional CMOS microchip coatings for protein and peptide arrays. Journal of Proteome Research 6, 3197–202.

    Article  PubMed  CAS  Google Scholar 

  15. Beyer, M., Felgenhauer, T., Bischoff, F. R., Breitling, F., and Stadler, V. (2006) A novel glass-slide based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials 27, 3505–14.

    Article  PubMed  CAS  Google Scholar 

  16. Stadler, V., Kirmse, R., Beyer, M., Breitling, F., Ludwig, T. and Bischoff, F. R. (2008) PEGMA/MMA copolymer graftings: Generation, protein resistance, and a hydrophobic domain. Langmuir 24, 8151–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to the memory of Prof. Annemarie Poustka.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nesterov, A. et al. (2010). Peptide Arrays with a Chip. In: Uttamchandani, M., Yao, S. (eds) Small Molecule Microarrays. Methods in Molecular Biology, vol 669. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-845-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-845-4_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-844-7

  • Online ISBN: 978-1-60761-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics