Skip to main content

The Expanding World of Small Molecule Microarrays

  • Protocol
  • First Online:
Small Molecule Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 669))

Abstract

Speed and throughput are vital ingredients for discovery-driven, “-omics” research. The small molecule microarray is one such platform, which delivers phenomenal screening throughput and capabilities. The concept at the heart of the technology is elegant, yet simple: by presenting large collections of molecules at a high density on a flat surface, one is able to interrogate them quickly and conveniently, evaluating all possible interactions in a single step. SMMs have, over the last decade, been established as a robust platform for screening, lead discovery, and molecular characterization. In this chapter, we describe the ways in which microarrays have been constructed and applied, focusing on the practical challenges faced when designing and performing SMM experiments. This is written as an introduction for new readers to the field, explaining the key principles and laying the foundation for the chapters that follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, Y., Uttamchandani, M., and Yao, S. Q. (2006) Microarray: a versatile platform for high-throughput functional proteomics, Comb Chem High Throughput Screen 9, 203–212.

    Article  PubMed  CAS  Google Scholar 

  2. MacBeath, G., and Saghatelian, A. (2009) The promise and challenge of ‘-omic’ approaches, Curr Opin Chem Biol 13, 501–502.

    Article  PubMed  CAS  Google Scholar 

  3. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  4. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R. W. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes, Proc Natl Acad Sci U S A 93, 10614–10619.

    Article  PubMed  CAS  Google Scholar 

  5. Uttamchandani, M., Neo, J. L., Ong, B. N., and Moochhala, S. (2009) Applications of microarrays in pathogen detection and biodefence, Trends Biotechnol 27, 53–61.

    Article  PubMed  CAS  Google Scholar 

  6. Khan, J., Bittner, M. L., Chen, Y., Meltzer, P. S., and Trent, J. M. (1999) DNA microarray ­technology: the anticipated impact on the study of human disease, Biochim Biophys Acta 1423, M17–M28.

    PubMed  CAS  Google Scholar 

  7. Yoo, S. M., Choi, J. H., Lee, S. Y., and Yoo, N. C. (2009) Applications of DNA microarray in disease diagnostics, J Microbiol Biotechnol 19, 635–646.

    PubMed  Google Scholar 

  8. Uttamchandani, M., Wang, J., and Yao, S. Q. (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics, Mol Biosyst 2, 58–68.

    Article  PubMed  CAS  Google Scholar 

  9. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vohringer, C. F., and Joos, T. O. (2002) Protein microarray technology, Trends Biotechnol 20, 160–166.

    Article  PubMed  CAS  Google Scholar 

  10. Falsey, J. R., Renil, M., Park, S., Li, S., and Lam, K. S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays, Bioconjug Chem 12, 346–353.

    Article  PubMed  CAS  Google Scholar 

  11. Park, S., and Shin, I. (2002) Fabrication of carbohydrate chips for studying protein-­carbohydrate interactions, Angew Chem Int Ed Engl 41, 3180–3182.

    Article  PubMed  CAS  Google Scholar 

  12. Park, S., Lee, M. R., Pyo, S. J., and Shin, I. (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions, J Am Chem Soc 126, 4812–4819.

    Article  PubMed  CAS  Google Scholar 

  13. Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J., and Schreiber, S. L. (2002) Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays, Nature 416, 653–657.

    Article  PubMed  CAS  Google Scholar 

  14. Hergenrother, P. J., Depew, K. M., and Schreiber, S. L. (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides, J Am Chem Soc 122, 7849–7850.

    Article  CAS  Google Scholar 

  15. MacBeath, G., Koehler, A. N., and Schreiber, S. L. (1999) Printing small molecules as microarrays and detecting protein ligand interactions en masse, J Am Chem Soc 121, 7967–7968.

    Article  CAS  Google Scholar 

  16. MacBeath, G., and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination, Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  17. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M., and Snyder, M. (2001) Global analysis of protein activities using proteome chips, Science 293, 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  18. Ziauddin, J., and Sabatini, D. M. (2001) Microarrays of cells expressing defined cDNAs, Nature 411, 107–110.

    Article  PubMed  CAS  Google Scholar 

  19. Horvath, L., and Henshall, S. (2001) The application of tissue microarrays to cancer research, Pathology 33, 125–129.

    Article  PubMed  CAS  Google Scholar 

  20. Sun, H., Chattopadhaya, S., Wang, J., and Yao, S. Q. (2006) Recent developments in microarray-based enzyme assays: from functional annotation to substrate/inhibitor fingerprinting, Anal Bioanal Chem 386, 416–426.

    Article  PubMed  CAS  Google Scholar 

  21. Uttamchandani, M., Walsh, D. P., Yao, S. Q., and Chang, Y. T. (2005) Small molecule microarrays: recent advances and applications, Curr Opin Chem Biol 9, 4–13.

    Article  PubMed  CAS  Google Scholar 

  22. Uttamchandani, M., Lu, C. H., and Yao, S. Q. (2009) Next generation chemical proteomic tools for rapid enzyme profiling, Acc Chem Res 42, 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  23. Sun, H., Lu, C. H., Uttamchandani, M., Xia, Y., Liou, Y. C., and Yao, S. Q. (2008) Peptide microarray for high-throughput determination of phosphatase specificity and biology, Angew Chem Int Ed Engl 47, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  24. Gosalia, D. N., Salisbury, C. M., Ellman, J. A., and Diamond, S. L. (2005) High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase ­fluorogenic peptide microarrays, Mol Cell Proteomics 4, 626–636.

    Article  PubMed  CAS  Google Scholar 

  25. Shigaki, S., Yamaji, T., Han, X., Yamanouchi, G., Sonoda, T., Okitsu, O., Mori, T., Niidome, T., and Katayama, Y. (2007) A peptide microarray for the detection of protein kinase activity in cell lysate, Anal Sci 23, 271–275.

    Article  PubMed  CAS  Google Scholar 

  26. Evans, D., Johnson, S., Laurenson, S., Davies, A. G., Ko Ferrigno, P., and Walti, C. (2008) Electrical protein detection in cell lysates using high-density peptide-aptamer microarrays, J Biol 7, 3.

    Article  PubMed  Google Scholar 

  27. Stiffler, M. A., Grantcharova, V. P., Sevecka, M., and MacBeath, G. (2006) Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays, J Am Chem Soc 128, 5913–5922.

    Article  PubMed  CAS  Google Scholar 

  28. Jones, R. B., Gordus, A., Krall, J. A., and MacBeath, G. (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays, Nature 439, 168–174.

    Article  PubMed  CAS  Google Scholar 

  29. Eisenstein, M. (2006) Protein arrays: growing pains, Nature 444, 959–962.

    Article  PubMed  CAS  Google Scholar 

  30. Lam, K. S., and Renil, M. (2002) From ­combinatorial chemistry to chemical microarray, Curr Opin Chem Biol 6, 353–358.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, J., Uttamchandani, M., Sun, H., and Yao, S. Q. (2006) Small molecule microarrays: applications using specially tagged chemical libraries. QSAR Comb Sci 25, 1009–1019.

    Article  CAS  Google Scholar 

  32. Lee, A., and Breitenbucher, J. G. (2003) The impact of combinatorial chemistry on drug discovery, Curr Opin Drug Discov Devel 6, 494–508.

    PubMed  CAS  Google Scholar 

  33. Koehler, A. N., Shamji, A. F., and Schreiber, S. L. (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis, J Am Chem Soc 125, 8420–8421.

    Article  PubMed  CAS  Google Scholar 

  34. Xiao, X. Y., Li, R., Zhuang, H., Ewing, B., Karunaratne, K., Lillig, J., Brown, R., and Nicolaou, K. C. (2000) Solid-phase combinatorial synthesis using MicroKan reactors, Rf tagging, and directed sorting. Biotechnol Bioeng 71, 44–50.

    Article  PubMed  CAS  Google Scholar 

  35. Kanoh, N., Asami, A., Kawatani, M., Honda, K., Kumashiro, S., Takayama, H., Simizu, S., Amemiya, T., Kondoh, Y., Hatakeyama, S., Tsuganezawa, K., Utata, R., Tanaka, A., Yokoyama, S., Tashiro, H., and Osada, H. (2006) Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions, Chem Asian J 1, 789–797.

    Article  PubMed  CAS  Google Scholar 

  36. Kanoh, N., Takayama, H., Honda, K., Moriya, T., Teruya, T., Simizu, S., Osada, H., and Iwabuchi, Y. (2010) Cleavable linker for photocross-linked small-molecule affinity matrix. Bioconjug Chem 21, 182–186.

    Google Scholar 

  37. Kwon, K., Grose, C., Pieper, R., Pandya, G. A., Fleischmann, R. D., and Peterson, S. N. (2009) High quality protein microarray using in situ protein purification. BMC Biotechnol 9, 72.

    Article  PubMed  Google Scholar 

  38. Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y., and Yao, S. Q. (2002) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett 12, 2079–2083.

    Article  PubMed  CAS  Google Scholar 

  39. Ramachandran, N., Raphael, J. V., Hainsworth, E., Demirkan, G., Fuentes, M. G., Rolfs, A., Hu, Y., and LaBaer, J. (2008) Next-generation high-density self-assembling functional protein arrays. Nat Methods 5, 535–538.

    Article  PubMed  CAS  Google Scholar 

  40. Hu, Y., Chen, G. Y., and Yao, S. Q. (2005) Activity-based high-throughput screening of enzymes by using a DNA microarray. Angew Chem Int Ed Engl 44, 1048–1053.

    Article  PubMed  CAS  Google Scholar 

  41. Winssinger, N., and Harris, J. L. (2005) Microarray-based functional protein profiling using peptide nucleic acid-encoded libraries, Expert Rev Proteomics 2, 937–947.

    Article  PubMed  CAS  Google Scholar 

  42. Melkko, S., Scheuermann, J., Dumelin, C. E., and Neri, D. (2004) Encoded self-assembling chemical libraries, Nat Biotechnol 22, 568–574.

    Article  PubMed  CAS  Google Scholar 

  43. Gao, X., Pellois, J. P., Na, Y., Kim, Y., Gulari, E., and Zhou, X. (2004) High density peptide microarrays. In situ synthesis and applications, Mol Divers 8, 177–187.

    Article  PubMed  CAS  Google Scholar 

  44. Beyer, M., Nesterov, A., Block, I., Konig, K., Felgenhauer, T., Fernandez, S., Leibe, K., Torralba, G., Hausmann, M., Trunk, U., Lindenstruth, V., Bischoff, F. R., Stadler, V., and Breitling, F. (2007) Combinatorial synthesis of peptide arrays onto a microchip, Science 318, 1888.

    Article  PubMed  CAS  Google Scholar 

  45. Fodor, S. P., Rava, R. P., Huang, X. C., Pease, A. C., Holmes, C. P., and Adams, C. L. (1993) Multiplexed biochemical assays with biological chips, Nature 364, 555–556.

    Article  PubMed  CAS  Google Scholar 

  46. Breitling, F., Nesterov, A., Stadler, V., Felgenhauer, T., and Bischoff, F. R. (2009) High-density peptide arrays, Mol Biosyst 5, 224–234.

    Article  PubMed  CAS  Google Scholar 

  47. Duffner, J. L., Clemons, P. A., and Koehler, A. N. (2007) A pipeline for ligand discovery using small-molecule microarrays, Curr Opin Chem Biol 11, 74–82.

    Article  PubMed  CAS  Google Scholar 

  48. Pilobello, K. T., and Mahal, L. K. (2007) Deciphering the glycocode: the complexity and analytical challenge of glycomics, Curr Opin Chem Biol 11, 300–305.

    Article  PubMed  CAS  Google Scholar 

  49. Kohn, M., Wacker, R., Peters, C., Schroder, H., Soulere, L., Breinbauer, R., Niemeyer, C. M., and Waldmann, H. (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays, Angew Chem Int Ed Engl 42, 5830–5834.

    Article  PubMed  Google Scholar 

  50. Lin, P. C., Ueng, S. H., Tseng, M. C., Ko, J. L., Huang, K. T., Yu, S. C., Adak, A. K., Chen, Y. J., and Lin, C. C. (2006) Site-specific protein modification through Cu(I)-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication, Angew Chem Int Ed Engl 45, 4286–4290.

    Article  PubMed  CAS  Google Scholar 

  51. Lee, M. R., and Shin, I. (2005) Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides, Org Lett 7, 4269–4272.

    Article  PubMed  CAS  Google Scholar 

  52. Camarero, J. A., Kwon, Y., and Coleman, M. A. (2004) Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “protein chip” fabrication, J Am Chem Soc 126, 14730–14731.

    Article  PubMed  CAS  Google Scholar 

  53. Dillmore, W. S., Yousaf, M. N., and Mrksich, M. (2004) A photochemical method for patterning the immobilization of ligands and cells to self-assembled monolayers, Langmuir 20, 7223–7231.

    Article  PubMed  CAS  Google Scholar 

  54. Kanoh, N., Kumashiro, S., Simizu, S., Kondoh, Y., Hatakeyama, S., Tashiro, H., and Osada, H. (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions, Angew Chem Int Ed Engl 42, 5584–5587.

    Article  PubMed  CAS  Google Scholar 

  55. Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis, Science 251, 767–773.

    Article  PubMed  CAS  Google Scholar 

  56. Shaginian, A., Patel, M., Li, M. H., Flickinger, S. T., Kim, C., Cerrina, F., and Belshaw, P. J. (2004) Light-directed radial combinatorial chemistry: orthogonal safety-catch protecting groups for the synthesis of small molecule microarrays, J Am Chem Soc 126, 16704–16705.

    Article  PubMed  CAS  Google Scholar 

  57. Pellois, J. P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E., and Gao, X. (2002) Individually addressable parallel peptide synthesis on microchips, Nat Biotechnol 20, 922–926.

    Article  PubMed  CAS  Google Scholar 

  58. Diamond, S. L. (2007) Methods for mapping protease specificity, Curr Opin Chem Biol 11, 46–51.

    Article  PubMed  CAS  Google Scholar 

  59. Gosalia, D. N., Salisbury, C. M., Maly, D. J., Ellman, J. A., and Diamond, S. L. (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays, Proteomics 5, 1292–1298.

    Article  PubMed  CAS  Google Scholar 

  60. Angenendt, P., Lehrach, H., Kreutzberger, J., and Glokler, J. (2005) Subnanoliter enzymatic assays on microarrays, Proteomics 5, 420–425.

    Article  PubMed  CAS  Google Scholar 

  61. Bailey, S. N., Sabatini, D. M., and Stockwell, B. R. (2004) Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens, Proc Natl Acad Sci U S A 101, 16144–16149.

    Article  PubMed  CAS  Google Scholar 

  62. Blake, T. A., Ouyang, Z., Wiseman, J. M., Takats, Z., Guymon, A. J., Kothari, S., and Cooks, R. G. (2004) Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing, Anal Chem 76, 6293–6305.

    Article  PubMed  CAS  Google Scholar 

  63. Yu, X., Xu, D., and Cheng, Q. (2006) Label-free detection methods for protein microarrays, Proteomics 6, 5493–5503.

    Article  PubMed  CAS  Google Scholar 

  64. Lausted, C., Hu, Z., Hood, L., and Campbell, C. T. (2009) SPR imaging for high throughput, label-free interaction analysis, Comb Chem High Throughput Screen 12, 741–751.

    Article  PubMed  CAS  Google Scholar 

  65. Souplet, V., Desmet, R., and Melnyk, O. (2007) Imaging of protein layers with an optical microscope for the characterization of peptide microarrays, J Pept Sci 13, 451–457.

    Article  PubMed  CAS  Google Scholar 

  66. Inoue, Y., Mori, T., Yamanouchi, G., Han, X., Sonoda, T., Niidome, T., and Katayama, Y. (2008) Surface plasmon resonance imaging measurements of caspase reactions on peptide microarrays, Anal Biochem 375, 147–149.

    Article  PubMed  CAS  Google Scholar 

  67. Ozkumur, E., Needham, J. W., Bergstein, D. A., Gonzalez, R., Cabodi, M., Gershoni, J. M., Goldberg, B. B., and Unlu, M. S. (2008) Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications, Proc Natl Acad Sci U S A 105, 7988–7992.

    Article  PubMed  CAS  Google Scholar 

  68. Uttamchandani, M., Walsh, D. P., Khersonsky, S. M., Huang, X., Yao, S. Q., and Chang, Y. T. (2004) Microarrays of tagged combinatorial triazine libraries in the discovery of small-molecule ligands of human IgG, J Comb Chem 6, 862–868.

    Article  PubMed  CAS  Google Scholar 

  69. Disney, M. D., and Seeberger, P. H. (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens, Chem Biol 11, 1701–1707.

    Article  PubMed  CAS  Google Scholar 

  70. Funeriu, D. P., Eppinger, J., Denizot, L., Miyake, M., and Miyake, J. (2005) Enzyme family-specific and activity-based screening of chemical libraries using enzyme microarrays, Nat Biotechnol 23, 622–627.

    Article  PubMed  CAS  Google Scholar 

  71. Gordus, A., and MacBeath, G. (2006) Circumventing the problems caused by protein diversity in microarrays: implications for protein interaction networks, J Am Chem Soc 128, 13668–13669.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu, Q., Uttamchandani, M., Li, D., Lesaicherre, M. L., and Yao, S. Q. (2003) Enzymatic profiling system in a small-molecule microarray, Org Lett 5, 1257–1260.

    Article  PubMed  CAS  Google Scholar 

  73. Salisbury, C. M., Maly, D. J., and Ellman, J. A. (2002) Peptide microarrays for the determination of protease substrate specificity, J Am Chem Soc 124, 14868–14870.

    Article  PubMed  CAS  Google Scholar 

  74. Uttamchandani, M., Chen, G. Y., Lesaicherre, M. L., and Yao, S. Q. (2004) Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays, Methods Mol Biol 264, 191–204.

    PubMed  CAS  Google Scholar 

  75. Stoevesandt, O., Elbs, M., Kohler, K., Lellouch, A. C., Fischer, R., Andre, T., and Brock, R. (2005) Peptide microarrays for the detection of molecular interactions in cellular signal transduction, Proteomics 5, 2010–2017.

    Article  PubMed  CAS  Google Scholar 

  76. Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M., and Reimer, U. (2004) Target specificity analysis of the Abl kinase using peptide microarray data, J Mol Biol 336, 307–311.

    Article  PubMed  CAS  Google Scholar 

  77. Sun, H., Tan, L. P., Gao, L., and Yao, S. Q. (2009) High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray, Chem Commun (Camb), 677–679.

    Google Scholar 

  78. Kohn, M., Gutierrez-Rodriguez, M., Jonkheijm, P., Wetzel, S., Wacker, R., Schroeder, H., Prinz, H., Niemeyer, C. M., Breinbauer, R., Szedlacsek, S. E., and Waldmann, H. (2007) A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase, Angew Chem Int Ed Engl 46, 7700–7703.

    Article  PubMed  Google Scholar 

  79. Park, S., and Shin, I. (2007) Carbohydrate microarrays for assaying galactosyltransferase activity, Org Lett 9, 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  80. Bryan, M. C., Lee, L. V., and Wong, C. H. (2004) High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays, Bioorg Med Chem Lett 14, 3185–3188.

    Article  PubMed  CAS  Google Scholar 

  81. Ban, L., and Mrksich, M. (2008) On-chip synthesis and label-free assays of oligosaccharide arrays, Angew Chem Int Ed Engl 47, 3396–3399.

    Article  PubMed  CAS  Google Scholar 

  82. Wang, J., Uttamchandani, M., Sun, L. P., and Yao, S. Q. (2006) Activity-based high-throughput profiling of metalloprotease inhibitors using small molecule microarrays, Chem Commun (Camb), 717–719.

    Google Scholar 

  83. Scheuermann, J., Dumelin, C. E., Melkko, S., Zhang, Y., Mannocci, L., Jaggi, M., Sobek, J., and Neri, D. (2008) DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors, Bioconjug Chem 19, 778–785.

    Article  PubMed  CAS  Google Scholar 

  84. Chen, G. Y., Uttamchandani, M., Zhu, Q., Wang, G., and Yao, S. Q. (2003) Developing a strategy for activity-based detection of enzymes in a protein microarray, Chembiochem 4, 336–339.

    Article  PubMed  CAS  Google Scholar 

  85. Reddy, M. M., and Kodadek, T. (2005) Protein “fingerprinting” in complex mixtures with peptoid microarrays, Proc Natl Acad Sci U S A 102, 12672–12677.

    Article  PubMed  CAS  Google Scholar 

  86. Usui, K., Ojima, T., Takahashi, M., Nokihara, K., and Mihara, H. (2004) Peptide arrays with designed secondary structures for protein characterization using fluorescent fingerprint patterns, Biopolymers 76, 129–139.

    Article  PubMed  CAS  Google Scholar 

  87. Usui, K., Tomizaki, K. Y., and Mihara, H. (2006) Protein-fingerprint data mining of a designed alpha-helical peptide array, Mol Biosyst 2, 417–420.

    Article  PubMed  CAS  Google Scholar 

  88. Uttamchandani, M., Wang, J., Li, J., Hu, M., Sun, H., Chen, K. Y., Liu, K., and Yao, S. Q. (2007) Inhibitor fingerprinting of matrix metalloproteases using a combinatorial peptide hydroxamate library, J Am Chem Soc 129, 7848–7858.

    Article  PubMed  CAS  Google Scholar 

  89. Uttamchandani, M., Huang, X., Chen, G. Y., and Yao, S. Q. (2005) Nanodroplet profiling of enzymatic activities in a microarray, Bioorg Med Chem Lett 15, 2135–2139.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by MOE (R143-000-394-112), BMRC (R143-000-391-305), CRP (R143-000-218-281), and DSO National Laboratories.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Uttamchandani, M., Yao, S.Q. (2010). The Expanding World of Small Molecule Microarrays. In: Uttamchandani, M., Yao, S. (eds) Small Molecule Microarrays. Methods in Molecular Biology, vol 669. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-845-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-845-4_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-844-7

  • Online ISBN: 978-1-60761-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics