Skip to main content

Reverse Engineering Gene Regulatory Networks Related to Quorum Sensing in the Plant Pathogen Pectobacterium atrosepticum

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

The objective of the project reported in the present chapter was the reverse engineering of gene regulatory networks related to quorum sensing in the plant pathogen Pectobacterium atrosepticum from micorarray gene expression profiles, obtained from the wild-type and eight knockout strains. To this end, we have applied various recent methods from multivariate statistics and machine learning: graphical Gaussian models, sparse Bayesian regression, LASSO (least absolute shrinkage and selection operator), Bayesian networks, and nested effects models. We have investigated the degree of similarity between the predictions obtained with the different approaches, and we have assessed the consistency of the reconstructed networks in terms of global topological network properties, based on the node degree distribution. The chapter concludes with a biological evaluation of the predicted network structures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    1 See further information in ArrayExpress-http://www.ebi.ac.uk/microarray-as/aer/.

  2. 2.

    http://www.chem.agilent.com/en-US/Products/software/lifesciencesinformatics/genespringgx/Pages/default.aspx.

  3. 3.

    3 Note that in contrast to most home-spotted cDNA microarrays, Agilent arrays are not printed by different print tips and thus are not subdivided into separate subblocks within the array. For this reason, it was not necessary to use the print-tip lowess algorithm, which applies the same curve fitting technique separately to each subblock on the array.

  4. 4.

    4 http://www.bioconductor.org/.

  5. 5.

    5 http://www.ebi.ac.uk/GOA/proteomes.html.

  6. 6.

    6 https://asap.ahabs.wisc.edu/asap/logon.php.

  7. 7.

    7 http://www.charite.de/ch/medgen/ontologizer/commandline/Ontologizer.jar.

  8. 8.

    8 http://www.bioss.ac.uk.testweb.bioss.sari.ac.uk/staff/dirk/Supplements/FF842/.

  9. 9.

    9 In statistics, this is called a type-II maximum likelihood estimation.

  10. 10.

    10 Note that one can always draw a straight line through two points.

  11. 11.

    11 http://www.bioss.ac.uk/staff/dirk/Supplements/FF842/.

References

  1. Liu, H., Coulthurst, S. J., Pritchard, L., Hedley, P. E., Ravensdale, M., Humphris, S., Burr, T., Takle, G., Brurberg, M.-B., Birch, P. R. J., Salmond, G. P. C. and Toth, I. K. (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathogens, 4, 29.

    Google Scholar 

  2. Yang, Y., Dudoit, S., Luu, P. and Speed, T. (2001) Normalization for cDNA microarray data. In Bittner, M., Chen, Y., Dorsel, A. and Dougherty, E. (eds.), Microarrays: Optical Technologies and Informatics, volume 4266 of Proceedings of SPIE.

    Google Scholar 

  3. Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3, Article 3.

    Google Scholar 

  4. Smyth, G. K. (2005) Limma: linear models for microarray data. In Gentleman, R., Carey, V., Huber, W., Irizarry, R. and Dudoit, S. (eds.), Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health, pp. 397–420. Springer, New York.

    Chapter  Google Scholar 

  5. Lönnstedt, I. and Speed, T. (2002) Replicated microarray data. Statistica Sinica, 12, 31–46.

    Google Scholar 

  6. Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statistical Learning. Springer-Verlag, New York.

    Google Scholar 

  7. Beal, M. J. (2003) Variational algorithms for approximate Bayesian inference. Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College London.

    Google Scholar 

  8. Butte, A. S. and Kohane, I. S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing, 2000, 418–429.

    Google Scholar 

  9. Werhli, A. V., Grzegorczyk, M. and Husmeier, D. (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics, 22, 2523–2531.

    Article  PubMed  CAS  Google Scholar 

  10. Edwards, D. M. (2000) Introduction to Graphical Modelling. Springer Verlag, New York.

    Book  Google Scholar 

  11. Schäfer, J. and Strimmer, K. (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, Article 32.

    Google Scholar 

  12. Opgen-Rhein, R. and Strimmer, K. (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology, 1, 37.

    Article  PubMed  Google Scholar 

  13. Williams, P. M. (1995) Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7, 117–143.

    Article  Google Scholar 

  14. Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    Google Scholar 

  15. van Someren, E. P., Vaes, B. L. T., Steegenga, W. T., Sijbers, A. M., Dechering, K. J. and Reinders, M. J. T. (2006) Least absolute regression network analysis of the murine osterblast differentiation network. Bioinformatics, 22, 477–484.

    Article  PubMed  CAS  Google Scholar 

  16. Grandvalet, Y. and Canu, S. (1998) Outcomes of the equivalence of adaptive ridge with least absolute shrinkage. In Kearns, M., Solla, S.A. and Cohn, D.A. (eds.), Advances in Neural Information Processing Systems 11, pp. 445–451. MIT Press, Cambridge

    Google Scholar 

  17. MacKay, D. J. C. (1996) Hyperparameters: optimize, or integrate out. In Heidbreder, G. (ed.), Maximum Entropy and Bayesian Methods, pp. 43–59. Kluwer Academic Publisher, Santa Barbara.

    Chapter  Google Scholar 

  18. MacKay, D. J. C. (1992) Bayesian interpolation. Neural Computation, 4, 415–447.

    Article  Google Scholar 

  19. Rogers, S. and Girolami, M. (2005) A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics, 21, 3131–3137.

    Article  PubMed  CAS  Google Scholar 

  20. Tipping, M. and Faul, A. (2003) Fast marginal likelihood maximisation for sparse Bayesian models. In M., B. C. and J., F. B. (eds.), Proceedings of the International Workshop on Artificial Intelligence and Statistics, volume 9.

    Google Scholar 

  21. Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000) Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.

    Article  PubMed  CAS  Google Scholar 

  22. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. and Young, R. A. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 6, 422–433.

    Google Scholar 

  23. Husmeier, D., Dybowski, R. and Roberts, S. (2005) Probabilistic Modeling in Bioinformatics and Medical Informatics. Advanced Information and Knowledge Processing. Springer, New York.

    Book  Google Scholar 

  24. Heckerman, D. (1999) A tutorial on learning with Bayesian networks. In Jordan, M. I. (ed.), Learning in Graphical Models, Adaptive Computation and Machine Learning, pp. 301–354. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  25. Grzegorczyk, M., Husmeier, D. and Werhli, A. (2008) Reverse engineering gene regulatory networks with various machine learning methods. In Emmert-Streib, F. and Dehmer, M. (eds.), Analysis of Microarray Data: A Network-Based Approach, pp. 101–142. Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  26. Geiger, D. and Heckerman, D. (1994) Learning Gaussian networks. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 235–243. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  27. Madigan, D. and York, J. (1995) Bayesian graphical models for discrete data. International Statistical Review, 63, 215–232.

    Article  Google Scholar 

  28. Friedman, N. and Koller, D. (2003) Being Bayesian about network structure. Machine Learning, 50, 95–126.

    Article  Google Scholar 

  29. Grzegorczyk, M. and Husmeier, D. (2008) Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Machine Learning, 71, 265–305.

    Article  Google Scholar 

  30. Markowetz, F., Bloch, J. and Spang, R. (2005) Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics, 21, 4026–4032.

    Article  PubMed  CAS  Google Scholar 

  31. Fröhlich, H., Fellmann, M., Sultmann, H., Poustka, A. and Beissbarth, T. (2008) Estimating large scale signaling networks through nested effect models with intervention effects from microarray data. Bioinformatics, 24, 2650–2656.

    Article  PubMed  Google Scholar 

  32. Markowetz, F., Kostka, D., Troyanskaya, O. and Spang, R. (2007) Nested effects models for highdimensional phenotyping screens. Bioinformatics, 23, i305–i312.

    Article  PubMed  CAS  Google Scholar 

  33. Fröhlich, H., Tresch, A. and Beissbarth, T. (2009) Nested effects models for learning signaling networks from perturbation data. Biometrical Journal, 51, 304–323.

    Article  PubMed  Google Scholar 

  34. Margaritis, D. (2003) Learning Bayesian network model structure from data. Ph.D. thesis, School of Computer Science, Carnegie-Mellon University.

    Google Scholar 

  35. Bishop, C. M. (1995) Neural Networks for Pattern Recognition. Oxford University Press, New York, ISBN 0-19-853864-2.

    Google Scholar 

  36. Guelzim, N., Bottani, S., Bourgine, P. and Kepes, F. (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nature Genetics, 31, 60–63.

    Article  PubMed  CAS  Google Scholar 

  37. Battiti, R. and Colla, A. M. (1994) Democracy in neural nets: voting schemes for classification. Neural Networks, 7, 691–707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Husmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lin, K. et al. (2010). Reverse Engineering Gene Regulatory Networks Related to Quorum Sensing in the Plant Pathogen Pectobacterium atrosepticum . In: Fenyö, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics