Skip to main content

A Functional Proteomic Study of the Trypanosoma brucei Nuclear Pore Complex: An Informatic Strategy

  • Protocol
  • First Online:
Computational Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

The nuclear pore complex (NPC) is the sole mediator of transport between the nucleus and the cytoplasm. The NPC is composed of about 30 distinct proteins, termed nucleoporins or nups. The yeast (Rout et al., J Cell Biol 148:635–651, 2000) and mammalian (Cronshaw et al., J Cell Biol 158:915–927, 2002) NPC have been extensively studied. However, the two species are relatively closely related. Thus, to reveal details about NPC evolution, we chose to characterize the NPC of a distantly related organism, Trypanosoma brucei. We took a subcellular proteomic approach and used several complementary strategies to identify 865 proteins associated with the nuclear envelope. Over 50% of ∼8,100 open reading frames of T. brucei have little or no known function because T. brucei is distantly related to model metazoa and fungi (Berriman et al., Science 309:416–422, 2005). By sequence similarity alone, we could identify only five nucleoporins. This chapter outlines our strategy to identify 17 additional nucleoporins as well as contribute functional annotation data to the T. brucei genome database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao YM, Chait BT. (2000) The yeast nuclear pore complex: Composition, architecture, and transport mechanism. The Journal of Cell Biology; 148:635–51.

    Article  PubMed  CAS  Google Scholar 

  2. Cronshaw JA, Krutchinsky AN, Zhang WZ, Chait BT, Matunis MJ. (2002) Proteomic analysis of the mammalian nuclear pore complex. The Journal of Cell Biology; 158:915–27.

    Article  PubMed  CAS  Google Scholar 

  3. Berriman M, Ghedin E, Hertz-Fowler C, et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science; 309:416–22.

    Article  PubMed  CAS  Google Scholar 

  4. Atwood JA, Weatherly DB, Minning TA, et al. (2005) The Trypanosoma cruzi proteome. Science; 309:473–6.

    Article  PubMed  CAS  Google Scholar 

  5. McHugh L, Arthur JW. (2008) Computational methods for protein identification from mass spectrometry data. PLoS Computational Biology; 4:e12.

    Article  PubMed  Google Scholar 

  6. Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research; 25:3389–402.

    Article  PubMed  CAS  Google Scholar 

  7. Pearson WR, Lipman DJ. (1988) Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America; 85:2444–8.

    Article  PubMed  CAS  Google Scholar 

  8. Eddy SR. (1998) Profile hidden Markov models. Bioinformatics; 14:755–63.

    Article  PubMed  CAS  Google Scholar 

  9. Kall L, Krogh A, Sonnhammer ELL. (2004) A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology; 338:1027–36.

    Article  PubMed  CAS  Google Scholar 

  10. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology; 337:635–45.

    Article  PubMed  CAS  Google Scholar 

  11. Lupas A, Vandyke M, Stock J. (1991) Predicting coiled coils from protein sequences. Science; 252:1162–4.

    Article  CAS  Google Scholar 

  12. Hawkins J, Davis L, Boden M. (2007) Predicting nuclear localization. Journal of Proteome Research; 6:1402–9.

    Article  PubMed  CAS  Google Scholar 

  13. McGuffin LJ, Bryson K, Jones DT. (2000) The PSIPRED protein structure prediction server. Bioinformatics; 16:404–5.

    Article  PubMed  CAS  Google Scholar 

  14. Soding J, Biegert A, Lupas AN. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research; 33:W244–8.

    Article  PubMed  Google Scholar 

  15. Larkin MA, Blackshields G, Brown NP, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics; 23:2947–8.

    Article  PubMed  CAS  Google Scholar 

  16. Rout MP, Field MC. (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei – Identification of a major repetitive nuclear lamina component. Journal of Biological Chemistry; 276:38261–71.

    Article  PubMed  CAS  Google Scholar 

  17. DeGrasse JA, Chait BT, Field MC, Rout MP. High-yield isolation and subcellular proteomic characterization of nuclear and subnuclear structures from trypanosomes. In: Hancock R, ed. Methods in Molecular Biology: The Nucleus. New York: Humana Press; 2008:77–92.

    Google Scholar 

  18. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. (2000) The Pfam protein families database. Nucleic Acids Research; 28:263–6.

    Article  PubMed  CAS  Google Scholar 

  19. Finn RD, Tate J, Mistry J, et al. (2008) The Pfam protein families database. Nucleic Acids Research; 36:D281–8.

    Article  PubMed  CAS  Google Scholar 

  20. Fenyö D, Zhang W, Beavis RC, Chait BT. (1996) Internet-based analytical chemistry resources – a model project. Analytical Chemistry; 68:A721–6.

    Article  Google Scholar 

  21. Devos D, Dokudovskaya S, Williams R, et al. (2006) Simple fold composition and modular architecture of the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America; 103:2172–7.

    Article  PubMed  CAS  Google Scholar 

  22. Devos D, Dokudovskaya S, Alber F, et al. (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biology; 2:e380.

    Article  PubMed  Google Scholar 

  23. DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP, Chait BT. (2010) Evidence for a Shared Nuclear Pore Complex Architecture That Is Conserved from the Last Common Eukaryotic Ancestor. Molecular & Cellular Proteomics; 8:2119–30.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Brian T. Chait, Mark C. Field, Michael P. Rout, and Andrej Sali for the helpful advice and discussions. The work was supported by the Training Program in Chemical Biology (JAD).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

DeGrasse, J.A., Devos, D. (2010). A Functional Proteomic Study of the Trypanosoma brucei Nuclear Pore Complex: An Informatic Strategy. In: Fenyö, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics