Skip to main content

Mass Spectrometric Protein Identification Using the Global Proteome Machine

  • Protocol
  • First Online:
Computational Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

Protein identification by mass spectrometry is widely used in biological research. Here, we describe how the global proteome machine (GPM) can be used for protein identification and for validation of the results. We cover identification by searching protein sequence collections and spectral libraries as well as validation of the results using expectation values, rho-diagrams, and spectrum databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Flikka, L. Martens, J. Vandekerckhove, K. Gevaert, and I. Eidhammer (2006) Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering, Proteomics, 6, 2086ā€“94.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. W.J. Henzel, T.M. Billeci, J.T. Stults, S.C. Wong, C. Grimley, and C. Watanabe (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases, Proc Natl Acad Sci USA, 90, 5011ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. D. Fenyo, J. Qin, and B.T. Chait (1998) Protein identification using mass spectrometric information, Electrophoresis, 19, 998ā€“1005.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. J. Eriksson and D. Fenyo (2005) Protein identification in complex mixtures, J Proteome Res, 4, 387ā€“93.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. J. Eriksson and D. Fenyo (2007) Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs, Nat Biotechnol, 25, 651ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. O.N. Jensen, A.V. Podtelejnikov, and M. Mann (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching, Anal Chem, 69, 4741ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. J.K. Eng, A.L. McCormack, and J.R. Yates (1994) An approach to correlate mass spectral data with amino acid sequences in a protein database, J Am Soc Mass Spectrom, 5, 976.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. M. Mann and M. Wilm (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags, Anal Chem, 66, 4390ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. A.M. Duffield, A.V. Robertson, C. Djerassi, B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum, and J. Lederberg (1969) Applications of artificial intelligence for chemical inference. II. Interpretation of low-resolution mass spectra of ketones, J Am Chem Soc, 91, 2977ā€“81.

    ArticleĀ  Google ScholarĀ 

  10. J. Lederberg, G.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum, A.V. Robertson, A.M. Duffield, and C. Djerassi (1969) Applications of artificial intelligence for chemical inference. I. The number of possible organic compounds. Acyclic structures containing C, H, O, and N, J Am Chem Soc, 91, 2973ā€“6.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. G. Schroll (1969) Applications of artificial intelligence for chemical inference. III. Aliphatic ethers diagnosed by their low-resolution mass spectra and nuclear magnetic resonance data, J Am Chem Soc, 91, 2977ā€“81.

    ArticleĀ  Google ScholarĀ 

  12. S. Heller (1999) The history of the NIST/EPA/NIH mass spectral database, Todayā€™s Chemist at Work, 8, 45ā€“50.

    Google ScholarĀ 

  13. R. Craig, J.C. Cortens, D. Fenyo, and R.C. Beavis (2006) Using annotated peptide mass spectrum libraries for protein identification, J Proteome Res, 5, 1843ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. H. Lam, E.W. Deutsch, J.S. Eddes, J.K. Eng, N. King, S.E. Stein, and R. Aebersold (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS, Proteomics, 7, 655ā€“67.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. J.A. Taylor and R.S. Johnson (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry, Rapid Commun Mass Spectrom, 11, 1067ā€“75.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. V. Dancik, T.A. Addona, K.R. Clauser, J.E. Vath, and P.A. Pevzner (1999) De novo peptide sequencing via tandem mass spectrometry, J Comput Biol, 6, 327ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry, Rapid Commun Mass Spectrom, 17, 2337ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. B. Spengler (2004) De novo sequencing, peptide composition analysis, and composition-based sequencing: a new strategy employing accurate mass determination by fourier transform ion cyclotron resonance mass spectrometry, J Am Soc Mass Spectrom, 15, 703ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. J. Eriksson, B.T. Chait, and D. Fenyo (2000) A statistical basis for testing the significance of mass spectrometric protein identification results, Anal Chem, 72, 999ā€“1005.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. J.E. Elias and S.P. Gygi (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nat Methods, 4, 207ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. H.I. Field, D. Fenyo, and R.C. Beavis (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database, Proteomics, 2, 36ā€“47.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. A. Keller, A.I. Nesvizhskii, E. Kolker, and R. Aebersold (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem, 74, 5383ā€“92.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. D. Fenyo and R.C. Beavis (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes, Anal Chem, 75, 768ā€“74.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  24. J. Eriksson and D. Fenyo (2004) Probity, a protein identification algorithm with accurate assignment of the statistical significance of the results, J Proteome Res, 3, 32ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. R. Craig and R.C. Beavis (2003) A method for reducing the time required to match protein sequences with tandem mass spectra, Rapid Commun Mass Spectrom, 17, 2310ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. R. Craig and R.C. Beavis (2004) TANDEM: matching proteins with tandem mass spectra, Bioinformatics, 20, 1466ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. R. Craig, J.P. Cortens, and R.C. Beavis (2005) The use of proteotypic peptide libraries for protein identification, Rapid Commun Mass Spectrom, 19, 1844ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. R. Craig, J.P. Cortens, and R.C. Beavis (2004) Open source system for analyzing, validating, and storing protein identification data, J Proteome Res, 3, 1234ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. D. Fenyo, B.S. Phinney, and R.C. Beavis (2007) Determining the overall merit of protein identification data sets: rho-diagrams and rho-scores, J Proteome Res, 6, 1997ā€“2004.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. D.N. Perkins, D.J. Pappin, D.M. Creasy, and J.S. Cottrell (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, 20, 3551ā€“67.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. W. Zhang and B.T. Chait (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information, Anal Chem, 72, 2482ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. J. Magnin, A. Masselot, C. Menzel, and J. Colinge (2004) OLAV-PMF: a novel scoring scheme for high-throughput peptide mass fingerprinting, J Proteome Res, 3, 55ā€“60.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported by funding provided by the National Institutes of Health Grants RR00862 and RR022220, the Carl Trygger foundation, and the Swedish research council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fenyƶ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fenyƶ, D., Eriksson, J., Beavis, R. (2010). Mass Spectrometric Protein Identification Using the Global Proteome Machine. In: Fenyƶ, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics