Skip to main content

Computational Design of Chimeric Protein Libraries for Directed Evolution

  • Protocol
  • First Online:
Computational Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

The best approach for creating libraries of functional proteins with large numbers of nondisruptive amino acid substitutions is protein recombination, in which structurally related polypeptides are swapped among homologous proteins. Unfortunately, as more distantly related proteins are recombined, the fraction of variants having a disrupted structure increases. One way to enrich the fraction of folded and potentially interesting chimeras in these libraries is to use computational algorithms to anticipate which structural elements can be swapped without disturbing the integrity of a protein’s structure. Herein, we describe how the algorithm Schema uses the sequences and structures of the parent proteins recombined to predict the structural disruption of chimeras, and we outline how dynamic programming can be used to find libraries with a range of amino acid substitution levels that are enriched in variants with low Schema disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., and Baker, D. (2003) Design of a novel globular protein fold with atomic-level accuracy Science 302, 1364–1368.

    CAS  Google Scholar 

  2. Park, H.S., Nam, S.H., Lee, J.K., Yoon, C.N., Mannervik, B., Benkovic, S.J., and Kim, H.S. (2006) Design and evolution of new catalytic activity with an existing protein scaffold Science 311, 535–538.

    CAS  Google Scholar 

  3. Arnold, F.H. (2001) Advances in Protein Chemistry, Vol. 55, 55th Edition, San Diego: Academic Press.

    Google Scholar 

  4. Axe, D.D. (2004) Estimating the prevalence of protein sequences adopting functional enzyme folds J Mol Biol 341, 1295–1315.

    Article  PubMed  CAS  Google Scholar 

  5. Bloom, J.D., Silberg, J.J., Wilke, C.O., Drummond, D.A., Adami, C., and Arnold, F.H. (2005) Thermodynamic prediction of protein neutrality Proc Natl Acad Sci U S A 102, 606–611.

    Article  PubMed  CAS  Google Scholar 

  6. Amin, N., Liu, A.D., Ramer, S., Aehle, W., Meijer, D., Metin, M., Wong, S., Gualfetti, P., and Schellenberger, V. (2004) Construction of stabilized proteins by combinatorial consensus mutagenesis Protein Eng Des Sel 17, 787–793.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, L., Brock, A., Herberich, B., and Schultz, P.G. (2001) Expanding the genetic code of Escherichia coli Science 292, 498–500.

    Article  PubMed  CAS  Google Scholar 

  8. Otey, C.R., Landwehr, M., Endelman, J.B., Hiraga, K., Bloom, J.D., and Arnold, F.H. (2006) Structure-guided recombination creates an artificial family of cytochromes P450 PLoS Biol 4, e112.

    Article  PubMed  Google Scholar 

  9. Endelman, J.B., Silberg, J.J., Wang, Z.G., and Arnold, F.H. (2004) Site-directed protein recombination as a shortest-path problem Protein Eng Des Sel 17, 589–594.

    Article  PubMed  CAS  Google Scholar 

  10. Meyer, M.M., Silberg, J.J., Voigt, C.A., Endelman, J.B., Mayo, S.L., Wang, Z.G., and Arnold, F.H. (2003) Library analysis of SCHEMA-guided protein recombination Protein Sci 12, 1686–1693.

    Article  PubMed  CAS  Google Scholar 

  11. Voigt, C.A., Martinez, C., Wang, Z.G., Mayo, S.L., and Arnold, F.H. (2002) Protein building blocks preserved by recombination Nat Struct Biol 9, 553–558.

    PubMed  CAS  Google Scholar 

  12. Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003) SWISS-MODEL: an automated protein homology-modeling server Nucleic Acids Res 31, 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  13. Guda, C., Lu, S., Scheeff, E.D., Bourne, P.E., and Shindyalov, I.N. (2004) CE-MC: a multiple protein structure alignment server Nucleic Acids Res 32, W100–W103.

    Article  PubMed  CAS  Google Scholar 

  14. Guex, N., and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  15. Tatusova, T.A., and Madden, T.L. (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences FEMS Microbiol Lett 174, 247–250.

    Article  PubMed  CAS  Google Scholar 

  16. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007) Clustal W and Clustal X version 2.0 Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  17. Drummond, D.A., Silberg, J.J., Meyer, M.M., Wilke, C.O., and Arnold, F.H. (2005) On the conservative nature of intragenic recombination Proc Natl Acad Sci U S A 102, 5380–5385.

    Article  PubMed  CAS  Google Scholar 

  18. Hiraga, K., and Arnold, F.H. (2003) General method for sequence-independent site-directed chimeragenesis J Mol Biol 330, 287–296.

    Article  PubMed  CAS  Google Scholar 

  19. Meyer, M.M., Hiraga, K., and Arnold, F.H. (2006) Combinatorial recombination of gene fragments to construct a library of chimeras Curr Protoc Protein Sci Chapter 26, Unit 26.2.

    Google Scholar 

  20. Bloom, J.D., Labthavikul, S.T., Otey, C.R., and Arnold, F.H. (2006) Protein stability promotes evolvability Proc Natl Acad Sci U S A 103, 5869–5874.

    Article  PubMed  CAS  Google Scholar 

  21. Li, Y., Drummond, D.A., Sawayama, A.M., Snow, C.D., Bloom, J.D., and Arnold, F.H. (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments Nat Biotechnol 25, 1051–1056.

    Article  PubMed  CAS  Google Scholar 

  22. Otey, C.R., Silberg, J.J., Voigt, C.A., Endelman, J.B., Bandara, G., and Arnold, F.H. (2004) Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach Chem Biol 11, 309–318.

    Article  PubMed  CAS  Google Scholar 

  23. Meyer, M.M., Hochrein, L., and Arnold, F.H. (2006) Structure-guided SCHEMA recombination of distantly related beta-lactamases Protein Eng Des Sel 19, 563–570.

    Article  PubMed  CAS  Google Scholar 

  24. Chung, S.Y., and Subbiah, S. (1996) A structural explanation for the twilight zone of protein sequence homology Structure 4, 1123–1127.

    CAS  Google Scholar 

  25. Bosley, A.D., and Ostermeier, M. (2005) Mathematical expressions useful in the construction, description and evaluation of protein libraries Biomol Eng 22, 57–61.

    Article  PubMed  CAS  Google Scholar 

  26. Silberg, J.J., Endelman, J.B., and Arnold, F.H. (2004) SCHEMA-guided protein recombination Methods Enzymol 388, 35–42.

    Article  PubMed  CAS  Google Scholar 

  27. Saraf, M.C., Horswill, A.R., Benkovic, S.J., and Maranas, C.D. (2004) FamClash: a method for ranking the activity of engineered enzymes Proc Natl Acad Sci USA 101, 4142–4147.

    Article  PubMed  CAS  Google Scholar 

  28. Saraf, M.C., and Maranas, C.D. (2003) Using a residue clash map to functionally characterize protein recombination hybrids Protein Eng 16, 1025–1034.

    Article  PubMed  CAS  Google Scholar 

  29. Sieber, V., Martinez, C.A., and Arnold, F.H. (2001) Libraries of hybrid proteins from distantly related sequences Nat Biotechnol 19, 456–460.

    Article  PubMed  CAS  Google Scholar 

  30. Bae, E., and Phillips, G.N., Jr. (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases J Biol Chem 279, 28202–28208.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Robert A. Welch Foundation C-1614 (to J.J.S.), Hamill Innovation Award (to J.J.S.), and National Institutes of Health training grant 2T32-GM008362 (to P.Q.N.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Silberg, J.J., Nguyen, P.Q., Stevenson, T. (2010). Computational Design of Chimeric Protein Libraries for Directed Evolution. In: Fenyö, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics