Skip to main content

Fragment Descriptors in Structure–Property Modeling and Virtual Screening

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

This chapter reviews the application of fragment descriptors at different stages of virtual screening: filtering, similarity search, and direct activity assessment using QSAR/QSPR models. Several case studies are considered. It is demonstrated that the power of fragment descriptors stems from their universality, very high computational efficiency, simplicity of interpretation, and versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubinyi, H., and Muler, G. (2004) Chemogenomics in Drug Discovery, Wiley-VCH Publishers, Weinheim.

    Book  Google Scholar 

  2. Gorse, A. D. (2006) Diversity in Medicinal Chemistry Space. Curr. Top. Med. Chem. 6, 3–18.

    Article  PubMed  CAS  Google Scholar 

  3. Walters, W. P., Stahl, M. T., and Murcko, M. A. (1998) Virtual Screening – An Overview. Drug Discov. Today 3, 160–178.

    Article  CAS  Google Scholar 

  4. Seifert, M. H., Kraus, J., and Kramer, B. (2007) Virtual High-Throughput Screening of Molecular Databases. Curr. Opin. Drug. Discov. Dev. 10, 298–307.

    CAS  Google Scholar 

  5. Cavasotto, C. N., and Orry, A. J. (2007) Ligand Docking and Structure-Based Virtual Screening in Drug Discovery. Curr. Top. Med. Chem. 7, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  6. Ghosh, S., Nie, A., An, J., and Huang, Z. (2006) Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery. Curr. Opin. Chem. Biol. 10, 194–202.

    Article  PubMed  CAS  Google Scholar 

  7. Todeschini, R., and Consonni, V. (2000) Handbook of Molecular Descriptors. Wiley-VCH Publishers, Weinheim.

    Book  Google Scholar 

  8. Zefirov, N. S., and Palyulin, V. A. (2002) Fragmental Approach in QSPR. J. Chem. Inf. Comput. Sci. 42, 1112–1122.

    Article  PubMed  CAS  Google Scholar 

  9. Japertas, P., Didziapetris, R., and Petrauskas, A. (2002) Fragmental Methods in the Design of New Compounds. Applications of The Advanced Algorithm Builder. Quant. Struct. Act. Relat. 21, 23–37.

    Article  CAS  Google Scholar 

  10. Artemenko, N. V., Baskin, I. I., Palyulin, V. A., and Zefirov, N. S. (2003) Artificial Neural Network and Fragmental Approach in Prediction of Physicochemical Properties of Organic Compounds. Russ. Chem. Bull. 52, 20–29.

    Article  CAS  Google Scholar 

  11. Merlot, C., Domine, D., and Church, D. J. (2002) Fragment Analysis in Small Molecule Discovery. Curr. Opin. Drug Discov. Dev. 5, 391–399.

    CAS  Google Scholar 

  12. Varnek, A., Fourches, D., Hoonakker, F., and Solov’ev, V. P. (2005) Substructural Fragments: An Universal Language to Encode Reactions, Molecular and Supramolecular Structures. J. Comput. Aided Mol. Des. 19, 693–703.

    Article  PubMed  CAS  Google Scholar 

  13. Jelfs, S., Ertl, P., and Selzer, P. (2007) Estimation of pKa for Drug Like Compounds Using Semiempirical and Information-Based Descriptors. J. Chem. Inf. Model. 47, 450–459.

    Article  PubMed  CAS  Google Scholar 

  14. Tatevskii, V. M. (1950) Chemical Structure of Hydrocarbons and Their Heats of Formation. Dokl. Akad. Nauk SSSR 75, 819–822.

    CAS  Google Scholar 

  15. Tatevskii, V. M., Mendzheritskii, E. A., and Korobov, V. (1951) The Additive Scheme of the Heat of Formation of Hydrocarbons and the Problem of the Heat of Sublimation of Graphite. Vestn. Mosk. Univ. 6, 83–86.

    CAS  Google Scholar 

  16. Bernstein, H. J. (1952) The Physical Properties of Molecules in Relation to Their Structure. I: Relations Between Additive Molecular Properties in Several Homologous Series. J. Chem. Phys. 20, 263–269.

    Article  CAS  Google Scholar 

  17. Laidler, K. J. (1956) System of Molecular Thermochemistry for Organic Gases and Liquids. Can. J. Chem. 34, 626–648.

    Article  CAS  Google Scholar 

  18. Benson, S. W., and Buss, J. H. (1958) Additivity Rules for the Estimation of Molecular Properties: Thermodynamic Properties. J. Chem. Phys. 29, 546–572.

    Article  CAS  Google Scholar 

  19. Free, S. M., Jr., and Wilson, J. W. (1964) A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem. 7, 395–399.

    Article  PubMed  CAS  Google Scholar 

  20. Hiller, S. A., Golender, V. E., Rosenblit, A. B., Rastrigin, L. A., and Glaz, A. B. (1973) Cybernetic Methods of Drug Design. I: Statement of the Problem – The Perceptron Approach. Comput. Biomed. Res. 6, 411–421.

    Article  PubMed  CAS  Google Scholar 

  21. Hiller, S. A., Glaz, A. B., Rastrigin, L. A., and Rosenblit, A. B. (1971) Recognition of Phisiological Activity of Chemical Compounds on Perceptron with Random Adaptation of Structure. Dokl. Akad. Nauk SSSR 199, 851–853.

    Google Scholar 

  22. Golender, V. E., and Rozenblit, A. B. (1974) Interactive System for Recognition of Biological Activity Features in Complex Chemical Compounds. Avtomatika i Telemekhanika 99–105.

    Google Scholar 

  23. Golender, V. E., and Rozenblit, A. B. (1980) Logico-Structural Approach to Computer-Assisted Drug Design. Med. Chem. 11, 299–337.

    CAS  Google Scholar 

  24. Piruzyan, L. A., Avidon, V. V., Rozenblit, A. B., Arolovich, V. S., Golender, V. E., Kozlova, S. P., Mikhailovskii, E. M., and Gavrishchuk, E. G. (1977) Statistical Study of an Information File on Biologically Active Compounds: Data Bank of the Structure and Activity of Chemical Compounds. Khimiko-Farmatsevticheskii Zhurnal 11, 35–40.

    CAS  Google Scholar 

  25. Avidon, V. V., Pomerantsev, I. A., Golender, V. E., and Rozenblit, A. B. (1982) Structure-Activity Relationship Oriented Languages for Chemical Structure Representation. J. Chem. Inf. Comput. Sci. 22, 207–214.

    Article  CAS  Google Scholar 

  26. Cramer, R. D., III, Redl, G., and Berkoff, C. E. (1974) Substructural analysis: A Novel Approach to the Problem of Drug Design. J. Med. Chem. 17, 533–535.

    Article  PubMed  CAS  Google Scholar 

  27. Stuper, A. J., and Jurs, P. C. (1976) ADAPT: A Computer System for Automated Data Analysis Using Pattern Recognition Techniques. J. Chem. Inf. Model. 16, 99–105.

    Article  CAS  Google Scholar 

  28. Brugger, W. E., Stuper, A. J., and Jurs, P. C. (1976) Generation of Descriptors from Molecular Structures. J. Chem. Inf. Model. 16, 105–110.

    Article  CAS  Google Scholar 

  29. Hodes, L., Hazard, G. F., Geran, R. I., and Richman, S. (1977) A Statistical-Heuristic Methods for Automated Selection of Drugs for Screening. J. Med. Chem. 20, 469–475.

    Article  PubMed  CAS  Google Scholar 

  30. Milne, M., Lefkovitz, D., Hill, H., and Powers, R. (1972) Search of CA Registry (1.25 Million Compounds) with the Topological Screens System. J. Chem. Doc. 12, 183–189.

    Article  CAS  Google Scholar 

  31. Adamson, G. W., Cowell, J., Lynch, M. F., McLure, A. H. W., Town, W. G., and Yapp, A. M. (1973) Strategic Considerations in the Design of a Screening System for Substructure Searches of Chemical Structure Files. J. Chem. Doc. 13, 153–157.

    Article  CAS  Google Scholar 

  32. Feldman, A., and Hodes, L. (1975) An Efficient Design for Chemical Structure Searching. I: The Screens. J. Chem. Inf. Model. 15, 147–152.

    Article  CAS  Google Scholar 

  33. Willett, P. (1979) A Screen Set Generation Algorithm. J. Chem. Inf. Model. 19, 159–162.

    Article  CAS  Google Scholar 

  34. Willett, P. (1979) The Effect of Screen Set Size on Retrieval from Chemical Substructure Search Systems. J. Chem. Inf. Model. 19, 253–255.

    Article  CAS  Google Scholar 

  35. Willett, P., Winterman, V., and Bawden, D. (1986) Implementation of Nearest-Neighbor Searching in an Online Chemical Structure Search System. J. Chem. Inf. Model. 26, 36–41.

    Article  CAS  Google Scholar 

  36. Fisanick, W., Lipkus, A. H., and Rusinko, A. (1994) Similarity Searching on CAS Registry Substances. 2: 2D Structural Similarity. J. Chem. Inf. Model. 34, 130–140.

    Article  CAS  Google Scholar 

  37. Hodes, L. (1989) Clustering a Large Number of Compounds. 1: Establishing the Method on an Initial Sample. J. Chem. Inf. Model. 29, 66–71.

    Article  CAS  Google Scholar 

  38. McGregor, M. J., and Pallai, P. V. (1997) Clustering of Large Databases of Compounds: Using the MDL “Keys” as Structural Descriptors. J. Chem. Inf. Model. 37, 443–448.

    Article  CAS  Google Scholar 

  39. Turner, D. B., Tyrrell, S. M., and Willett, P. (1997) Rapid Quantification of Molecular Diversity for Selective Database Acquisition. J. Chem. Inf. Model. 37, 18–22.

    Article  CAS  Google Scholar 

  40. Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G. (2002) Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 42, 1273–1280.

    Article  PubMed  CAS  Google Scholar 

  41. Tong, W., Lowis, D. R., Perkins, R., Chen, Y., Welsh, W. J., Goddette, D. W., Heritage, T. W., and Sheehan, D. M. (1998) Evaluation of Quantitative Structure-Activity Relationship Methods for Large-Scale Prediction of Chemicals Binding to the Estrogen Receptor. J. Chem. Inf. Model. 38, 669–677.

    Article  CAS  Google Scholar 

  42. Lounkine, E., Batista, J., and Bajorath, J. (2008) Random Molecular Fragment Methods in Computational Medicinal Chemistry. Curr. Med. Chem. 15, 2108–2121.

    Article  PubMed  CAS  Google Scholar 

  43. Clark, M. (2005) Generalized Fragment-Substructure Based Property Prediction Method. J. Chem. Inf. Model. 45, 30–38.

    Article  PubMed  CAS  Google Scholar 

  44. Matter, H., Baringhaus, K. H., Naumann, T., Klabunde, T., and Pirard, B. (2001) Computational Approaches Towards the Rational Design of Drug-Like Compound Libraries. Comb. Chem. High Throughput Screen. 4, 453–475.

    Article  PubMed  CAS  Google Scholar 

  45. Oprea, T., Davis, A., Teague, S., and Leeson, P. (2001) Is There a Difference Between Leads and Drugs? A Historical Perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315.

    Article  PubMed  CAS  Google Scholar 

  46. Patchett, A. A. N., and Nargund, R. P. (2000) Privileged Structures: An Update. Annu. Rep. Med. Chem. 35, 289–298.

    Article  CAS  Google Scholar 

  47. Aronov, A. M., McClain, B., Moody, C. S., and Murcko, M. A. (2008) Kinase-Likeness and Kinase-Priviledged Fragments: Toward Virtual Pharmacology. J. Med. Chem. 51, 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  48. Gillet, V. M., Myatt G., Zsoldos, Z., and Johnson, P. (1995) SPROUT, HIPPO and CAESA: Tools for De Novo Structure Generation and Estimation of Synthetic Accessibility. Perspect. Drug Discov. Des. 3, 34–50.

    Article  CAS  Google Scholar 

  49. Schneider, G. F., and Fechner, U. (2005) Computer-Based De Novo Design of Drug-Like Molecules. Nat. Rev. Drug. Discov. 4, 649–663.

    Article  PubMed  CAS  Google Scholar 

  50. Lewell, X. Q., Judd D. B., Watson, S. P., and Hann, M. M. (1998) RECAP – Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry. J. Chem. Inf. Comput. Sci. 38, 511–522.

    Article  PubMed  CAS  Google Scholar 

  51. Petrauskas, A. A., and Kolovanov, E. A. (2000) ACD/Log P Method Description. Perspect. Drug Discov. Des. 19, 99–116.

    Article  CAS  Google Scholar 

  52. Artemenko, N. V., Baskin, I. I., Palyulin, V. A., and Zefirov, N. S. (2001) Prediction of Physical Properties of Organic Compounds Using Artificial Neural Networks Within the Substructure Approach. Dokl. Chem. 381, 317–320.

    Article  Google Scholar 

  53. Adamson, G. W., Lynch, M. F., and Town, W. G. (1971) Analysis of Structural Characteristics of Chemical Compounds in a Large Computer-Based File. Part II: Atom-Centered Fragments. J. Chem. Soc. C, 3702–3706.

    Article  Google Scholar 

  54. Hodes, L. (1981) Selection of Molecular Fragment Features for Structure-Activity Studies in Antitumor Screening. J. Chem. Inf. Comput. Sci. 21, 132–136.

    Article  PubMed  CAS  Google Scholar 

  55. Poroikov, V. V., Filimonov, D. A., Borodina, Y. V., Lagunin, A. A., and Kos, A. (2000) Robustness of Biological Activity Spectra Predicting by Computer Program Pass for Noncongeneric Sets of Chemical Compounds. J. Chem. Inf. Comput. Sci. 40, 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  56. Filimonov, D., Poroikov, V., Borodina, Y., and Gloriozova, T. (1999) Chemical Similarity Assessment through Multilevel Neighborhoods of Atoms: Definition and Comparison with the Other Descriptors. J. Chem. Inf. Comput. Sci. 39, 666–670.

    Article  CAS  Google Scholar 

  57. Xing, L., and Glen, R. C. (2002) Novel Methods for the Prediction of logP, pKa, and logD. J. Chem. Inf. Comput. Sci. 42, 796–805.

    Article  PubMed  CAS  Google Scholar 

  58. Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S. (2004) Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naive Bayesian Classifier. J. Chem. Inf. Comput. Sci. 44, 170–178.

    Article  PubMed  CAS  Google Scholar 

  59. Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S. (2004) Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): Evaluation of Performance. J. Chem. Inf. Comput. Sci. 44, 1708–1718.

    Article  PubMed  CAS  Google Scholar 

  60. Glen, R. C., Bender, A., Arnby, C. H., Carlsson, L., Boyer, S., and Smith, J. (2006) Circular Fingerprints: Flexible Molecular Descriptors with Applications from Physical Chemistry to ADME. IDrugs 9, 199–204.

    CAS  Google Scholar 

  61. Rodgers, S., Glen, R. C., and Bender, A. (2006) Characterizing Bitterness: Identification of Key Structural Features and Development of a Classification Model. J. Chem. Inf. Model. 46, 569–576.

    Article  PubMed  CAS  Google Scholar 

  62. Cannon, E. O., Amini, A., Bender, A., Sternberg, M. J. E., Muggleton, S. H., Glen, R. C., and Mitchell, J. B. O. (2007) Support Vector Inductive Logic Programming Outperforms the Naive Bayes Classifier and Inductive Logic Programming for the Classification of Bioactive Chemical Compounds. J. Comput. Aided Mol. Des. 21, 269–280.

    Article  PubMed  CAS  Google Scholar 

  63. Faulon, J.-L., Visco, D. P., Jr., and Pophale, R. S. (2003) The Signature Molecular Descriptor. 1: Using Extended Valence Sequences in QSAR and QSPR Studies. J. Chem. Inf. Comput. Sci. 43, 707–720.

    Article  PubMed  CAS  Google Scholar 

  64. Faulon, J.-L., Churchwell, C. J., and Visco, D. P., Jr. (2003) The Signature Molecular Descriptor. 2: Enumerating Molecules from Their Extended Valence Sequences. J. Chem. Inf. Comput. Sci. 43, 721–734.

    Article  PubMed  CAS  Google Scholar 

  65. Churchwell, C. J., Rintoul, M. D., Martin, S., Visco, D. P., Jr., Kotu, A., Larson, R. S., Sillerud, L. O., Brown, D. C., and Faulon, J. L. (2004) The Signature Molecular Descriptor. 3: Inverse-Quantitative Structure-Activity Relationship of ICAM-1 Inhibitory Peptides. J. Mol. Graph. Model. 22, 263–273.

    Article  PubMed  CAS  Google Scholar 

  66. Avidon, V. V., and Leksina, L. A. (1974) Descriptor Language for the Analysis of Structural Similarity of Organic Compounds. Nauchno. Tekhn. Inf., Ser. 2, 22–25.

    Google Scholar 

  67. Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985) Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications. J. Chem. Inf. Comput. Sci. 25, 64–73.

    Article  CAS  Google Scholar 

  68. Horvath, D. (2001) High Throughput Conformational Sampling & Fuzzy Similarity Metrics: A Novel Approach to Similarity Searching and Focused Combinatorial Library Design and Its Role in the Drug Discovery Laboratory. in Combinatorial Library Design and Evaluation: Principles, Software Tools and Applications (Ghose, A., and Viswanadhan, V., Eds.), 429–472, Marcel Dekker, New York.

    Google Scholar 

  69. Horvath, D., and Jeandenans, C. (2003) Neighborhood Behavior of In Silico Structural Spaces with Respect to In Vitro Activity Spaces: A Novel Understanding of the Molecular Similarity Principle in the Context of Multiple Receptor Binding Profiles. J. Chem. Inf. Comput. Sci. 43, 680–690.

    Article  PubMed  CAS  Google Scholar 

  70. Bonachera, F., Parent, B., Barbosa, F., Froloff, N., and Horvath, D. (2006) Fuzzy Tricentric Pharmacophore Fingerprints. 1: Topological Fuzzy Pharmacophore Triplets and Adapted Molecular Similarity Scoring Schemes. J. Chem. Inf. Model. 46, 2457–2477.

    Article  PubMed  CAS  Google Scholar 

  71. Horvath, D., Bonachera, F., Solov’ev, V., Gaudin, C., and Varnek, A. (2007) Stochastic versus Stepwise Strategies for Quantitative Structure-Activity Relationship Generation – How Much Effort May the Mining for Successful QSAR Models Take? J. Chem. Inf. Mod. 47, 927–939.

    Article  PubMed  CAS  Google Scholar 

  72. Schuffenhauer, A., Floersheim, P., Acklin, P., and Jacoby, E. (2003) Similarity Metrics for Ligands Reflecting the Similarity of the Target Proteins. J. Chem. Inf. Comput. Sci. 43, 391–405.

    Article  PubMed  CAS  Google Scholar 

  73. MOE, Molecular Operating Environment, Chemical Computing Group Inc., Montreal, Canada, MOE, Molecular Operating Environment, Chemical Computing Group Inc., Montreal, Canada. www.chemcomp.com.

  74. Franke, L., Byvatov, E., Werz, O., Steinhilber, D., Schneider, P., and Schneider, G. (2005) Extraction and Visualization of Potential Pharmacophore Points Using Support Vector Machines: Application to Ligand-Based Virtual Screening for COX-2 Inhibitors. J. Med. Chem. 48, 6997–7004.

    Article  PubMed  CAS  Google Scholar 

  75. Byvatov, E., Sasse, B. C., Stark, H., and Schneider, G. (2005) From Virtual to Real Screening for D3 Dopamine Receptor Ligands. Chembiochem. 6, 997–999.

    Article  PubMed  CAS  Google Scholar 

  76. Nilakantan, R., Bauman, N., Dixon, J. S., and Venkataraghavan, R. (1987) Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Descriptors. J. Chem. Inf. Comput. Sci. 27, 82–85.

    Article  CAS  Google Scholar 

  77. Kearsley, S. K., Sallamack, S., Fluder, E. M., Andose, J. D., Mosley, R. T., and Sheridan, R. P. (1996) Chemical Similarity Using Physiochemical Property Descriptors. J. Chem. Inf. Comput. Sci. 36, 118–127.

    Article  CAS  Google Scholar 

  78. Kuz’min, V. E., Muratov, E. N., Artemenko, A. G., Gorb, L. G., Qasim, M., and Leszczynski, J. (2008) The Effects of Characteristics of Substituents on Toxicity of the Nitroaromatics: HiT QSAR Study. J. Comput. Aid. Mol. Des. 22, 747–759.

    Article  PubMed  CAS  Google Scholar 

  79. Kuz’min, V. E., Artemenko, A. G., Muratov, E. N., Lozitsky, V. P., Fedchuk, A. S., Lozitska, R. N., Boschenko, Y. A., and Gridina., T. L. (2005) The Hierarchical QSAR Technology for Effective Virtual Screening and Molecular Design of the Promising Antiviral Compounds. Antivir. Res. 65, A70–A71.

    Google Scholar 

  80. Bemis, G. W., and Murcko, M. A. (1996) The Properties of Known Drugs. 1: Molecular Frameworks. J. Med. Chem. 39, 2887–2893.

    Article  PubMed  CAS  Google Scholar 

  81. Bemis, G. W., and Murcko, M. A. (1999) Properties of Known Drugs. 2: Side Chains. J. Med. Chem. 42, 5095–5099.

    Article  PubMed  CAS  Google Scholar 

  82. Guener, O. F. (2000) Pharmacophore Perception, Development, and Use in Drug Design, Wiley-VCH Publishers, Weinheim.

    Google Scholar 

  83. Langer, T., and Hoffman, R. D. (2000) Pharmacophores and Pharmacophore Searches, Wiley-VCH Publishers, Weinheim.

    Google Scholar 

  84. Wang, J., Lai, L., and Tang, Y. (1999) Structural Features of Toxic Chemicals for Specific Toxicity. J. Chem. Inf. Comput. Sci. 39, 1173–1189.

    Article  PubMed  CAS  Google Scholar 

  85. Kazius, J., McGuire, R., and Bursi, R. (2005) Derivation and Validation of Toxicophores for Mutagenicity Prediction. J. Med. Chem. 48, 312–320.

    Article  PubMed  CAS  Google Scholar 

  86. Cunningham, A. R., Rosenkranz, H. S., Zhang, Y. P., and Klopman, G. (1998) Identification of ‘Genotoxic’ and ‘Non-Genotoxic’ Alerts for Cancer in Mice: The Carcinogenic Potency Database. Mutat. Res. 398, 1–17.

    Article  PubMed  CAS  Google Scholar 

  87. Klopman, G. (1984) Artificial Intelligence Approach to Structure-Activity Studies. Computer Automated Structure Evaluation of Biological Activity of Organic Molecules. J. Am. Chem. Soc. 106, 7315–7321.

    Article  CAS  Google Scholar 

  88. Klopman, G., and Rosenkranz, H. S. (1984) Structural Requirements for the Mutagenicity of Environmental Nitroarenes. Mutat. Res. 126, 227–238.

    Article  PubMed  CAS  Google Scholar 

  89. Klopman, G. (1985) Predicting Toxicity Through a Computer Automated Structure Evaluation Program. Environ. Health Perspect. 61, 269–274.

    Article  PubMed  CAS  Google Scholar 

  90. Rosenkranz, H. S., Mitchell, C. S., and Klopman, G. (1985) Artificial Intelligence and Bayesian Decision Theory in the Prediction of Chemical Carcinogens. Mutat. Res. 150, 1–11.

    Article  PubMed  CAS  Google Scholar 

  91. Klopman, G. (1992) MULTICASE. 1: A Hierarchical Computer Automated Structure Evaluation Program. Quant. Struct. Act. Relat. 11, 176–184.

    Article  CAS  Google Scholar 

  92. Klopman, G., and Rosenkranz, H. S. (1994) Approaches to SAR in Carcinogenesis and Mutagenesis: Prediction of Carcinogenicity/Mutagenicity Using MULTI-CASE. Mutat. Res. 305, 33–46.

    Article  PubMed  CAS  Google Scholar 

  93. Klopman, G., Chakravarti, S. K., Harris, N., Ivanov, J., and Saiakhov, R. D. (2003) In-Silico Screening of High Production Volume Chemicals for Mutagenicity Using the MCASE QSAR Expert System. SAR QSAR Environ. Res. 14, 165–180.

    CAS  Google Scholar 

  94. Sanderson, D. M., and Earnshaw, C. G. (1991) Computer Prediction of Possible Toxic Action from Chemical Structure: The DEREK System. Hum. Exp. Toxicol. 10, 261–273.

    Article  PubMed  CAS  Google Scholar 

  95. Gombar, V. K., Enslein, K., Hart, J. B., Blake, B. W., and Borgstedt, H. H. (1991) Estimation of Maximum Tolerated Dose for Long-Term Bioassays from Acute Lethal Dose and Structure by QSAR. Risk Anal. 11, 509–517.

    Article  PubMed  CAS  Google Scholar 

  96. Judson, P. N. (1992) QSAR and Expert Systems in the Prediction of Biological Activity. Pestic. Sci. 36, 155–160.

    Article  CAS  Google Scholar 

  97. Judson, P. N. (1994) Rule Induction for Systems Predicting Biological Activity. J. Chem. Inf. Comput. Sci. 34, 148–153.

    Article  CAS  Google Scholar 

  98. Barratt, M. D., and Rodford, R. A. (2001) The Computational Prediction of Toxicity. Curr. Opin. Chem. Biol. 5, 383–388.

    Article  PubMed  CAS  Google Scholar 

  99. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 46, 3–26.

    Article  PubMed  CAS  Google Scholar 

  100. Oprea, T. I. (2000) Property Distribution of Drug-Related Chemical Databases. J. Comput. Aided Mol. Des. 14, 251–264.

    Article  PubMed  CAS  Google Scholar 

  101. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., and Kopple, K. D. (2002) Molecular Properties that Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 45, 2615–2623.

    Article  PubMed  CAS  Google Scholar 

  102. Hann, M. M., and Oprea, T. I. (2004) Pursuing the Leadlikeness Concept in Pharmaceutical Research. Curr. Opin. Chem. Biol. 8, 255–263.

    Article  PubMed  CAS  Google Scholar 

  103. Leo, A. J. (1993) Calculating log Poct from Structures. Chem. Rev. 93, 1281–1306.

    Article  CAS  Google Scholar 

  104. Tetko, I. V., and Livingstone, D. J. (2006) Rule-Based Systems to Predict Lipophilicity. in Comprehensive Medicinal Chemistry II: In Silico Tools in ADMET (Testa, B., and van de Waterbeemd, H., Eds.), 649–668, Elsevier, Oxford, UK.

    Google Scholar 

  105. Kubinyi, H. (1998) Similarity and Dissimilarity: A Medicinal Chemist’s View. Perspect. Drug Discov. Des. 9–11, 225–252.

    Article  Google Scholar 

  106. Martin, Y. C., Kofron, J. L., and Traphagen, L. M. (2002) Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 45, 4350–4358.

    Article  PubMed  CAS  Google Scholar 

  107. Daylight Chemical Information Systems Inc. http://www.daylight.com.

  108. Barnard Chemical Information Ltd. http://www.bci.gb.com/.

  109. Tripos Inc. http://www.tripos.com.

  110. Jaccard, P. (1901) Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines. Bull. Soc. Vaud. Sci. Nat. 37, 241–272.

    Google Scholar 

  111. Schneider, G., Neidhart, W., Giller, T., and Schmid, G. (1999) “Scaffold-Hopping” by Topological Pharmacophore Search: A Contribution to Virtual Screening. Angew. Chem. Int. Ed. 38, 2894–2896.

    Article  CAS  Google Scholar 

  112. Hull, R. D., Singh, S. B., Nachbar, R. B., Sheridan, R. P., Kearsley, S. K., and Fluder, E. M. (2001) Latent Semantic Structure Indexing (LaSSI) for Defining Chemical Similarity. J. Med. Chem. 44, 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  113. Hull, R. D., Fluder, E. M., Singh, S. B., Nachbar, R. B., Kearsley, S. K., and Sheridan, R. P. (2001) Chemical Similarity Searches Using Latent Semantic Structural Indexing (LaSSI) and Comparison to TOPOSIM. J. Med. Chem. 44, 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  114. Willett, P., Barnard, J. M., and Downs, G. M. (1998) Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 38, 983–996.

    Article  CAS  Google Scholar 

  115. Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., and Schuffenhauer, A. (2004) Comparison of Fingerprint-Based Methods for Virtual Screening Using Multiple Bioactive Reference Structures. J. Chem. Inf. Comput. Sci. 44, 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  116. Ormerod, A., Willett, P., and Bawden, D. (1989) Comparison of Fragment Weighting Schemes for Substructural Analysis. Quant. Struct. Act. Relat. 8, 115–129.

    Article  CAS  Google Scholar 

  117. Godden, J. W., Furr, J. R., Xue, L., Stahura, F. L., and Bajorath, J. (2004) Molecular Similarity Analysis and Virtual Screening by Mapping of Consensus Positions in Binary-Transformed Chemical Descriptor Spaces with Variable Dimensionality. J. Chem. Inf. Comput. Sci. 44, 21–29.

    Article  PubMed  CAS  Google Scholar 

  118. Godden, J. W., Stahura, F. L., and Bajorath, J. (2004) POT-DMC: A Virtual Screening Method for the Identification of Potent Hits. J. Med. Chem. 47, 5608–5611.

    Article  PubMed  CAS  Google Scholar 

  119. Batista, J., Godden, J. W., and Bajorath, J. (2006) Assessment of Molecular Similarity from the Analysis of Randomly Generated Structural Fragment Populations. J. Chem. Inf. Model. 46, 1937–1944.

    Article  PubMed  CAS  Google Scholar 

  120. Godden, J. W., and Bajorath, J. (2001) Differential Shannon Entropy as a Sensitive Measure of Differences in Database Variability of Molecular Descriptors. J. Chem. Inf. Comput. Sci. 41, 1060–1066.

    Article  PubMed  CAS  Google Scholar 

  121. Batista, J., and Bajorath, J. (2007) Chemical Database Mining Through Entropy-Based Molecular Similarity Assessment of Randomly Generated Structural Fragment Populations. J. Chem. Inf. Model. 47, 59–68.

    Article  PubMed  CAS  Google Scholar 

  122. Gute B. D., Basak S. C., Mills, D. and Hawkins, D. M. (2002) Tailored Similarity Spaces for the Prediction of Physicochemical Properties. Internet Electron. J. Mol. Des. 1, 374–387.

    CAS  Google Scholar 

  123. Fourches, D. (2007) Modèles multiples en QSAR/QSPR: développement de nouvelles approches et leurs applications au design «in silico» de nouveaux extractants de métaux, aux propriétés ADMETox ainsi qu’à différentes activités biologiques de molécules organiques. Louis Pasteur University of Strasbourg, Strasbourg.

    Google Scholar 

  124. Guha, R., and VanDrie, J. H. (2008) Structure-Activity Landscape Index: Identifying and Quantifying Activity Cliffs. J. Chem. Inf. Model. 48, 646–658.

    Article  PubMed  CAS  Google Scholar 

  125. Peltason, L., and Bajorath, J. (2007) SAR Index: Quantifying the Nature of Structure-Activity Relationships. J. Med. Chem. 50, 5571–5578.

    Article  PubMed  CAS  Google Scholar 

  126. Bonachera, F., and Horvath, D. (2008) Fuzzy Tricentric Pharmacophore Fingerprints. 2: Application of Topological Fuzzy Pharmacophore Triplets in Quantitative Structure-Activity Relationships. J. Chem. Inf. Model. 48, 409–425.

    Article  PubMed  CAS  Google Scholar 

  127. Harper, G., Bradshaw, J., Gittins, J. C., Green, D. V. S., and Leach, A. R. (2001) The Prediction of Biological Activity for High-Throughput Screening Using Binary Kernel Discrimination. J. Chem. Inf. Comput. Sci. 41, 1295–1300.

    Article  PubMed  CAS  Google Scholar 

  128. Geronikaki, A. A., Dearden, J. C., Filimonov, D., Galaeva, I., Garibova, T. L., Gloriozova, T., Krajneva, V., Lagunin, A., Macaev, F. Z., Molodavkin, G., Poroikov, V. V., Pogrebnoi, S. I., Shepeli, F., Voronina, T. A., Tsitlakidou, M., and Vlad, L. (2004) Design of New Cognition Enhancers: From Computer Prediction to Synthesis and Biological Evaluation. J. Med. Chem. 47, 2870–2876.

    Article  PubMed  CAS  Google Scholar 

  129. Katritzky, A. R., Kuanar, M., Slavov, S., Dobchev, D. A., Fara, D. C., Karelson, M., Acree, W. E., Jr., Solov’ev, V. P., and Varnek, A. (2006) Correlation of Blood-Brain Penetration Using Structural Descriptors. Bioorg. Med. Chem. 14, 4888–4917.

    Article  PubMed  CAS  Google Scholar 

  130. Katritzky, A. R., Dobchev, D. A., Fara, D. C., Hur, E., Tamm, K., Kurunczi, L., Karelson, M., Varnek, A., and Solov’ev, V. P. (2006) Skin Permeation Rate as a Function of Chemical Structure. J. Med. Chem. 49, 3305–3314.

    Article  PubMed  CAS  Google Scholar 

  131. Katritzky, A. R., Kuanar, M., Fara, D. C., Karelson, M., Acree, W. E., Jr., Solov’ev, V. P., and Varnek, A. (2005) QSAR Modeling of Blood: Air and Tissue: Air Partition Coefficients Using Theoretical Descriptors. Bioorg. Med. Chem. 13, 6450–6463.

    Article  PubMed  CAS  Google Scholar 

  132. Mannhold, R., Rekker, R. F., Sonntag, C., ter Laak, A. M., Dross, K., and Polymeropoulos, E. E. (1995) Comparative Evaluation of the Predictive Power of Calculation Procedures for Molecular Lipophilicity. J. Pharm. Sci. 84, 1410–1419.

    Article  PubMed  CAS  Google Scholar 

  133. Nys, G. G., and Rekker, R. F. (1973) Statistical Analysis of a Series of Partition Coefficients with Special Reference to the Predictability of Folding of Drug Molecules: Introduction of Hydrophobic Fragmental Constants (f-Values). Eur. J. Med. Chem. 8, 521–535.

    CAS  Google Scholar 

  134. Leo, A., Jow, P. Y. C., Silipo, C., and Hansch, C. (1975) Calculation of Hydrophobic Constant (log P) from pi and f Constants. J. Med. Chem. 18, 865–868.

    Article  PubMed  CAS  Google Scholar 

  135. Ghose, A. K., and Crippen, G. M. (1987) Atomic Physicochemical Parameters for Three-Dimensional-Structure-Directed Quantitative Structure-Activity Relationships. 2: Modeling Dispersive and Hydrophobic Interactions. J. Chem. Inf. Comput. Sci. 27, 21–35.

    Article  PubMed  CAS  Google Scholar 

  136. Ghose, A. K., and Crippen, G. M. (1986) Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I: Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. 7, 565–577.

    Article  CAS  Google Scholar 

  137. Ghose, A. K., Pritchett, A., and Crippen, G. M. (1988) Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure-Activity Relationships III: Modeling Hydrophobic Interactions. J. Comput. Chem. 9, 80–90.

    Article  CAS  Google Scholar 

  138. Wildman, S. A., and Crippen, G. M. (1999) Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 39, 868–873.

    Article  CAS  Google Scholar 

  139. Suzuki, T., and Kudo, Y. (1990) Automatic log P Estimation Based on Combined Additive Modeling Methods. J. Comput. Aided. Mol. Des. 4, 155–198.

    Article  PubMed  CAS  Google Scholar 

  140. Convard, T., Dubost, J.-P., Le Solleu, H., and Kummer, E. (1994) SMILOGP: A Program for a Fast Evaluation of Theoretical log-p from the Smiles Code of a Molecule. Quant. Struct. Act. Relat. 13, 34–37.

    CAS  Google Scholar 

  141. Wang, R., Gao, Y., and Lai, L. (2000) Calculating Partition Coefficient by Atom-Additive Method. Perspect. Drug Discov. Des. 19, 47–66.

    Article  CAS  Google Scholar 

  142. Wang, R., Fu, Y., and Lai, L. (1997) A New Atom-Additive Method for Calculating Partition Coefficients. J. Chem. Inf. Comput. Sci. 37, 615–621.

    Article  CAS  Google Scholar 

  143. Balakin, K. V., Savchuk, N. P., and Tetko, I. V. (2006) In Silico Approaches to Prediction of Aqueous and DMSO Solubility of Drug-Like Compounds: Trends, Problems and Solutions. Curr. Med. Chem. 13, 223–241.

    Article  PubMed  CAS  Google Scholar 

  144. Varnek, A., Kireeva, N., Tetko, I. V., Baskin, I. I., and Solov’ev, V. P. (2007) Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids: How Accurately Can We Predict Melting Points? J. Chem. Inf. Model. 47, 1111–1122.

    Article  PubMed  CAS  Google Scholar 

  145. Varnek, A., Fourches, D., Horvath, D., Klimchuk, O., Gaudin, O., Vayer, P., Solov’ev, V., Hoonakker, F., Tetko, I. V. and Marcou, G. (2008) ISIDA: Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors. Curr. Comput. Aided Drug Des. 4, 191–198.

    Article  CAS  Google Scholar 

  146. Varnek, A., Fourches, D., Solov’ev, V., Klimchuk, O., Ouadi, A., and Billard, I. (2007) Successful “In Silico” Design of New Efficient Uranyl Binders. Solvent Extr. Ion Exch. 25, 433–462.

    Article  CAS  Google Scholar 

  147. Grubbs, F. E. (1969) Procedures for Detecting Outlying Observations in Samples. Technometrics 11, 1–21.

    Article  Google Scholar 

  148. Solov’ev, V. P., and Varnek, A. (2003) Anti-HIV Activity of HEPT, TIBO, and Cyclic Urea Derivatives: Structure-Property Studies, Focused Combinatorial Library Generation, and Hits Selection Using Substructural Molecular Fragments Method J. Chem. Inf. Comput. Sci. 43, 1703–1719.

    Article  PubMed  CAS  Google Scholar 

  149. Fourches, D., Kireeva, N., Klimchuk, O., Marcou, G., Solov’ev, V., and Varnek, A. (2008) Computer-Aided Design of New Metal Binders. Radiochim. Acta 96, 505–511.

    Article  CAS  Google Scholar 

  150. Varnek, A., and Solov’ev, V. (2008) Quantitative Structure-Property Relationships in Solvent Extraction and Complexation of Metals. in Ion Exchange and Solvent Extraction (Sengupta, A. K., and Moyer, B.A., Eds.), Taylor and Francis, Philadelphia.

    Google Scholar 

  151. Horvath, D., Marcou, G., and Varnek A. (2009) Predicting the Predictability: A Unified Approach to the Applicability Domain Problem. J. Chem. Inf. Model. 49, 1762–1776.

    Google Scholar 

  152. Hao Zhu, D. F., Varnek, A., Papa, E., Gramatica, P., Tetko, I.V., Öberg, T., Cherkasov, A., and Tropsha, A. (2008) Combinational QSAR Modeling of Chemical Toxicants Tested Against Tetrahymena pyriformis. J. Chem. Inf. Model. 48, 766–784.

    Article  PubMed  CAS  Google Scholar 

  153. MolConnZ, version 4.05; eduSoft LC: Ashland, VA, 2003.

    Google Scholar 

  154. Tetko, I. V., Sushko, I., Pandey, A. K., Zhu, H., Tropsha, A., Papa, E., Öberg, T., Todeschini, R., Fourches, D., and Varnek, A. (2008) Critical Assessment of QSAR Models of Environmental Toxicity Against Tetrahymena pyriformis: Focusing On Applicability Domain and Overfitting by Variable Selection. J. Chem. Inf. Model. 48, 1733–1746.

    Article  PubMed  CAS  Google Scholar 

  155. Huuskonen, J. (2000) Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. J. Chem. Inf. Comput. Sci. 40, 773–777.

    Article  PubMed  CAS  Google Scholar 

  156. McElroy, N., and Jurs, P. (2001) Prediction of Aqueous Solubility of Heteroatom-Containing Organic Compounds from Molecular Structure. J. Chem. Inf. Comput. Sci. 41, 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  157. Ran, Y., Jain, N., and Yalkowsky, S. (2001) Prediction of Aqueous Solubility of Organic Compounds by the General Solubility Equation (GSE). J. Chem. Inf. Comput. Sci. 41, 1208–1217.

    Article  PubMed  CAS  Google Scholar 

  158. Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., and Giralt, F. (2001) A Fuzzy ARTMAP Based on Quantitative Structure-Property Relationships (QSPRs) for Predicting Aqueous Solubility of Organic Compounds. J. Chem. Inf. Comput. Sci. 41, 1177–1207.

    Article  PubMed  CAS  Google Scholar 

  159. Downs, G., and Barnard, J. (2002) Clustering Methods and Their Uses in Computational Chemistry. Rev. Comput. Chem. 18, 1–40.

    CAS  Google Scholar 

  160. Caruana, R. (1997) Multitask Learning. Mach. Learn. 28, 41–75.

    Article  Google Scholar 

  161. Varnek, A., Gaudin, C., Marcou, G.; Baskin, I., Pandey, A. K., and Tetko, I. V. (2009) Inductive Transfer of Knowledge: Application of Multi-Task Learning and Feature Net Approaches to Model Tissue-Air Partition Coefficients. J. Chem. Inf. Model. 49, 133–144.

    Google Scholar 

  162. Tetko, I. V., Tanchuk, V. Y., and Villa, A. E. P. (2001) Prediction of n-Octanol/Water Partition Coefficients from PHYSPROP Database Using Artificial Neural Networks and E-State Indices. J. Chem. Inf. Comput. Sci. 41, 1407–1421.

    Article  PubMed  CAS  Google Scholar 

  163. Efron, B. (1983) Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation. J. Am. Stat. Assoc. 78, 316–331.

    Article  Google Scholar 

  164. Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T. D., Gramatica, P., Jaworska, J. S., Kahn, S., Klopman, G., Marchant, C. A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G. Y., Perkins, R., Roberts, D. W., Schultz, T. W., Stanton, D. T., van de Sandt, J. J. M., Tong, W., Veith, G., and Yang, C. (2005) Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships. The Report and Recommendations of ECVAM Workshop 52. Altern. Lab. Anim. 33, 155–173.

    PubMed  CAS  Google Scholar 

  165. Jaworska, J., Nikolova-Jeliazkova, N., and Aldenberg, T. (2005) QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review. Altern. Lab. Anim. 33, 445–459.

    PubMed  CAS  Google Scholar 

  166. Sheridan, R. P., Feuston, B. P., Maiorov, V. N., and Kearsley, S. K. (2004) Similarity to Molecules in the Training Set is a Good Discriminator for Prediction Accuracy in QSAR. Altern. Lab. Anim. 44, 1912–1928.

    CAS  Google Scholar 

  167. Fukumizu, K., and Watanabe, S. (1993) Probabililty Density Estimation by Regularization Method, in Proceed. of the International Joint Conf. on Neural Networks, pp 1727–1730.

    Google Scholar 

  168. Parzen, E. (1962) On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 33, 1065–1076.

    Article  Google Scholar 

  169. Schioler, H., and Hartmann, U. (1992) Mapping Neural Network Derived from the Parzen Window Estimator. Neural Netw. 5, 903–909.

    Article  Google Scholar 

  170. Duda, R., and Hart, P. (1973) Pattern Classification and Scene Analysis, John Wiley & Sons, New York.

    Google Scholar 

  171. van der Eijkel, G. C., Jan, van der Lubbe, J., and Backer, E. (1997) A Modulated Parzen-Windows Approach for Probability Density Estimation, in Proceedings of the Second International Symposium on Advances in Intelligent Data Analysis, Reasoning about Data, Springer-Verlag.

    Google Scholar 

  172. Kireeva, N. (2009) QSPR Ensemble Modeling of Stabilities of Metal-Ligand Complexes and Melting Point of Ionic Liquids. PhD thesis. Louis Pasteur University, Strasbourg.

    Google Scholar 

  173. Feuston, B. P., Chakravorty, S. J., Conway, J. F., Culberson, J. C., Forbes, J., Kraker, B., Lennon, P. A., Lindsley, C., McGaughey, G. B., Mosley, R., Sheridan, R. P., Valenciano, M., and Kearsley, S. K. (2005) Web Enabling Technology for the Design, Enumeration, Optimization and Tracking of Compound Libraries. Curr. Top. Med. Chem. 5, 773–783.

    Article  PubMed  CAS  Google Scholar 

  174. Green, D. V., and Pickett, S. D. (2004) Methods for Library Design and Optimisation. Mini Rev. Med. Chem. 4, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  175. Green, D. V. (2003) Virtual Screening of Virtual Libraries. Prog. Med. Chem. 41, 61–97.

    Article  PubMed  CAS  Google Scholar 

  176. Varnek, A., Fourches, D., Solov’ev, V. P., Baulin, V. E., Turanov, A. N., Karandashev, V. K., Fara, D., and Katritzky, A. R. (2004) “In Silico” Design of New Uranyl Extractants Based on Phosphoryl-Containing Podands: QSPR Studies, Generation and Screening of Virtual Combinatorial Library and Experimental Tests. J. Chem. Inf. Comput. Sci. 44, 1365–1382.

    Article  PubMed  CAS  Google Scholar 

  177. Tetko, I. V. (2002) Neural Network Studies. 4: Introduction to Associative Neural Networks. J. Chem. Inf. Comput. Sci. 42, 717–728.

    Article  PubMed  CAS  Google Scholar 

  178. Vapnik, V. N. (1999) An Overview of Statistical Learning Theory. IEEE Trans. Neural Netw. 10, 988–999.

    Article  PubMed  CAS  Google Scholar 

  179. Fujita, S. (1986) Description of Organic Reactions Based on Imaginary Transition Structures. 1: Introduction of New Concepts. J. Chem. Inf. Comput. Sci. 26, 205–212.

    Article  CAS  Google Scholar 

  180. Jauffret, P., Tonnelier, C., Hanser, T., Kaufmann, G., and Wolff, R. (1990) Machine Learning of Generic Reactions: Toward an Advanced Comp uter Representation of Chemical Reactions. Tetrahedron Comput. Methodol. 3, 335–349.

    Article  CAS  Google Scholar 

  181. Vladutz, G. (1986) Modern Approaches to Chemical Reaction Searching, in Approaches to Chemical Reaction Searching (Willett, P., Ed.), 202–220, Gower, London.

    Google Scholar 

  182. Hoonakker, F. (2007) Graphes condensés de réeactions, applications à la recherche par similarité, la classification et la modélisation. Louis Pasteur University, Strasbourg.

    Google Scholar 

  183. Hoonakker, F., Lachiche, N., Varnek, A., and Wagner, A. (2009) Condensed Graph of Reaction: Considering a Chemical Reaction As one Single Pseudo Molecule. The 19th International Conference on Inductive Logic Programming. http://lsiit.u-strasbg.fr/Publications/2009/HLVW09.

  184. Tetko, I. V., Bruneau, P., Mewes, H. -W., Rohrer, D. C., and Poda, G. I. (2006) Can We Estimate the Accuracy of ADMET Predictions? Drug Discov. Today 11, 700–707.

    Article  PubMed  CAS  Google Scholar 

  185. Baskin, I. I., Halberstam, N. M., Artemenko, N. V., Palyulin, V. A., and Zefirov, N. S. (2003) NASAWIN – A Universal Software for QSPR/QSAR Studies. in EuroQSAR 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions. (Ford, M., Ed.), 260–263, Blackwell Publishing, Oxford, UK.

    Google Scholar 

  186. Halberstam, N. M. (2001) Modeling Properties and Reactivity of Organic Compounds Using Artificial Neural Networks. Department of Chemistry, Moscow State University, Moscow.

    Google Scholar 

  187. Leo, A. J., and Hoekman, D. (2000) Calculating log P (oct) with No Missing Fragments: The Problem of Estimating New Interaction Parameters. Perspect. Drug. Discov. Des. 18, 19–38.

    Article  CAS  Google Scholar 

  188. Honorio, K. M., Garratt, R. C., and Andricopulo, A. D. (2005) Hologram Quantitative Structure-Activity Relationships For A Series of Farnesoid X Receptor Activators. Bioorg. Med. Chem. Lett. 15, 3119–3125.

    Article  PubMed  CAS  Google Scholar 

  189. Baskin, I. I., Skvortsova, M. I., Stankevich, I. V., and Zefirov, N. S. (1995) On the Basis of Invariants of Labeled Molecular Graphs. J. Chem. Inf. Comput. Sci. 35, 527–531.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Varnek, A. (2010). Fragment Descriptors in Structure–Property Modeling and Virtual Screening. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics