Skip to main content

Computational Analysis of Activity and Selectivity Cliffs

  • Protocol
  • First Online:
Book cover Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

The exploration of structure–activity relationships (SARs) is a major challenge in medicinal chemistry and usually focuses on compound potency for individual targets. However, selectivity of small molecules that are active against related targets is another critical parameter in chemical lead optimization. Here, an integrative approach for the systematic analysis of SARs and structure–selectivity relationships (SSRs) of small molecules is presented. The computational methodology is described and a cathepsin inhibitor set is used to discuss key aspects of the analysis. Combining a numerical scoring scheme and graphical visualization of molecular networks, the approach enables the identification of different local SAR and SSR environments. Comparative analysis of these environments reveals variable relationships between molecular structure, potency, and selectivity. Furthermore, key compounds are identified that are involved in the formation of activity and/or selectivity cliffs and often display structural features that determine compound selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, M. A. and Maggiora, G. M., eds. (1990) Concepts and applications of molecular similarity. New York, NY: Wiley.

    Google Scholar 

  2. Maggiora, G. M. (2006) On outliers and activity cliffs – Why QSAR often disappoints J Chem Inf Model 46, 1535.

    Article  PubMed  CAS  Google Scholar 

  3. Peltason, L. and Bajorath, J. (2007) Molecular similarity analysis uncovers heterogeneous structure–activity relationships and variable activity landscapes Chem Biol 14, 489–497.

    Article  PubMed  CAS  Google Scholar 

  4. Bajorath, J., Peltason, L., Wawer, M., Guha, R., Lajiness, M. S., and van Drie, J. (2009) Navigating structure–activity landscapes Drug Discov Today 14, 698–705.

    Article  PubMed  CAS  Google Scholar 

  5. Peltason, L. and Bajorath, J. (2009) Systematic computational analysis of structure–activity relationships: Concepts, challenges, and recent advances Future Med Chem 1, 451–466.

    Article  PubMed  CAS  Google Scholar 

  6. Hopkins, A. L. (2008) Network pharmacology: The next paradigm in drug discovery Nat Chem Biol 4, 682–690.

    Article  PubMed  CAS  Google Scholar 

  7. Peltason, L., Hu, Y., and Bajorath, J. (2009) From structure–activity to structure–selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds Chem Med Chem 4 , 1864–1873

    PubMed  CAS  Google Scholar 

  8. Bajorath, J. (2008) Computational analysis of ligand relationships within target families Curr Opin Chem Biol 12, 352–358.

    Article  PubMed  CAS  Google Scholar 

  9. Peltason, L. and Bajorath, J. (2007) SAR index: Quantifying the nature of structure–activity relationships J Med Chem 50, 5571–5578.

    Article  PubMed  CAS  Google Scholar 

  10. Wawer, M., Peltason, L., Weskamp, N., Teckentrup, A., and Bajorath, J. (2008) Structure–activity relationship anatomy by network-like similarity graphs and local structure–activity relationship indices J Med Chem 51, 6075–6084.

    Article  PubMed  CAS  Google Scholar 

  11. MACCS Structural Keys: Symyx Software, San Ramon, CA (USA).

    Google Scholar 

  12. MOE (Molecular Operating Environment): Chemical Computing Group Inc., Montreal, Quebec (Canada).

    Google Scholar 

  13. Ward, J. H. (1963) Hierarchical grouping to optimize an objective function J Am Stat Assoc 58, 236–244.

    Article  Google Scholar 

  14. MDDR (MDL Drug Data Report): Symyx Software, San Ramon, CA (USA).

    Google Scholar 

  15. Stumpfe, D., Geppert, H., and Bajorath, J. (2008) Methods for computer-aided chemical biology. Part 3: Analysis of structure–selectivity relationships through single- or dual-step selectivity searching and Bayesian classification Chem Biol Drug Des 71, 518–528.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Peltason, L., Bajorath, J. (2011). Computational Analysis of Activity and Selectivity Cliffs. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics