Skip to main content

Beyond Rhodopsin: G Protein-Coupled Receptor Structure and Modeling Incorporating the β2-adrenergic and Adenosine A2A Crystal Structures

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

For quite some time, the majority of GPCR models have been based on a single template structure: dark-adapted bovine rhodopsin. The recent solution of β2AR, β1AR and adenosine A2A receptor crystal structures has dramatically expanded the GPCR structural landscape and provided many new insights into receptor conformation and ligand binding. They will serve as templates for the next generation of GPCR models, but also allow direct validation of previous models and computational techniques. This review summarizes key findings from the new structures, comparison of existing models to these structures and highlights new models constructed from these templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacoby, E., Bouhelal, R., Gerspacher, M., and Seuwen, K. (2006) The 7 TM G-protein-coupled receptor target family. Chem. Med. Chem. 1, 761–782.

    Article  PubMed  Google Scholar 

  2. Druey, K.M. (2003) Regulators of G protein signalling: potential targets for treatment of allergic inflammatory diseases such as asthma. Expert Opin. Ther. Targets 7, 475–484.

    Article  PubMed  CAS  Google Scholar 

  3. Esté, J.A. (2003) Virus entry as a target for anti-HIV intervention. Curr. Med. Chem. 10, 1617–1632.

    Article  PubMed  Google Scholar 

  4. Winzell, M.S. and Ahrén, B. (2007) G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes. Pharmacol. Ther. 116, 437–448.

    Article  PubMed  CAS  Google Scholar 

  5. Thompson, M.D., Cole, D.E., and Jose, P.A. (2008) Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. Methods Mol. Biol. 448, 77–107.

    Article  PubMed  CAS  Google Scholar 

  6. Hopkins, A.L. and Groom, C.R., (2002) The druggable genome. Nat. Rev. Drug. Discovery 1, 727–730.

    Article  CAS  Google Scholar 

  7. Horn, F., Bettler, E., Oliveria, L, Campagne, F, Cohen, F.E, and Vriend, G. (2003) GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res. 31, 294–297.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, Y., Ernst, C.A., and Rollins, B.J. (1996) MCP-1: structure/activity analysis. Methods 10, 93–103.

    Article  PubMed  CAS  Google Scholar 

  9. Gavrilin, M.A., Gulina, I.V., Kawano, T., Dragan, S., Chakravarti, L., and Kolattukudy, P.E. (2005) Site-directed mutagenesis of CCR2 identified amino acid residues in transmembrane helices 1, 2, and 7 important for MCP-1 binding and biological functions. Biochem. Biophys. Res. Commun. 11, 533–540.

    Article  Google Scholar 

  10. Parthier, C., Reedtz-Runge, S., Rudolph, R., Stubbs, M.T. (2009) Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem. Sci. 34, 303–310.

    Article  PubMed  CAS  Google Scholar 

  11. Rivier, J., Rivier, C., and Vale, W. (1984) Synthetic competitive antagonists of corticotropin-releasing factor: effect on ACTH secretion in the rat. Science 224, 889–891.

    Article  PubMed  CAS  Google Scholar 

  12. Göke, R., Fehmann, H.C., Linn, T., Schmidt, H., Krause, M., Eng, J., and Göke, B. (1993) J. Biol. Chem. 268, 19650–19655.

    PubMed  Google Scholar 

  13. Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H., and Morikawa, K. (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977.

    Article  PubMed  CAS  Google Scholar 

  14. Pin, J.P., Galvez, T., and Prezeau, L. (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354.

    Article  PubMed  CAS  Google Scholar 

  15. Schertler, G.F. and Villa, C., Henderson, R. (1993) Projection structure of rhodopsin. Nature 362, 770–772.

    Article  PubMed  CAS  Google Scholar 

  16. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M, and Miyano, M. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 298, 739–745.

    Article  Google Scholar 

  17. Patny, A., Desai, P.V., and Avery, M.A. (2006) Homology modeling of G-protein-coupled receptors and implications in drug design. Curr. Med. Chem. 13, 1667–1691.

    Article  PubMed  CAS  Google Scholar 

  18. Fanelli, F. and De Benedetti, P.G. (2005) Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem. Rev. 105, 3297–3351.

    Article  PubMed  CAS  Google Scholar 

  19. Rasmussen, S.G.F., Choi, H-J, Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R.P, Sanishvili, R, Fischetti, R.F., Schertler, G.F.X., Weis, W.I., and Kobilka, B.K. (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–387.

    Article  PubMed  CAS  Google Scholar 

  20. Cherezov V., Rosenbaum D.M., Hanson M.A., Rasmussen S.G., Thian F.S., Kobilka T.S., Choi H.J., Kuhn P., Weis W.I., Kobilka B.K., and Stevens R.C. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  21. Warne, T., Serrano-Vega, M.J., and Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G., Tate, C.G., Schertler, G.F. (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454, 486–491.

    Article  PubMed  CAS  Google Scholar 

  22. Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., and Stevens, R.C. (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  23. Henderson, R. and Schertler, G.F. (1990) The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. Philos.Trans. R. Soc. Lond. B. Biol. Sci. 326, 379–389.

    Article  PubMed  CAS  Google Scholar 

  24. Underwood, D.J., Strader, C.D., Rivero, R., Patchett, A.A., Greenlee, W., and Prendergast, K. (1994) Structural model of antagonist and agonist binding to the angiotensin II, AT1 subtype, G protein coupled receptor. Chem. Biol. 1, 211–221.

    Article  PubMed  CAS  Google Scholar 

  25. Trumpp-Kallmeyer-S, Hoflack, J., Bruinvels, A., and Hibert, M. (1992) Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J. Med. Chem., 35, 3448–3462.

    Google Scholar 

  26. Pebay-Peyroula, E. Rummel, G, Rosenbusch, J.P., and Landau, E.M. (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 277, 1676–1681.

    Google Scholar 

  27. Luecke, H, Schobert, B, Richter H-T., Cartailler, J-P., and Lanyi, J.K. (1999) Structure of bacteriorhodopsin at 1.55 a resolution. J. Mol. Biol. 291, 899–911.

    Article  PubMed  CAS  Google Scholar 

  28. Ballesteros, J., Palczewski, K. (2001) G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Curr. Op. Drug. Discov. Devel. 4, 561–574.

    CAS  Google Scholar 

  29. Baldwin, J.M. (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703.

    PubMed  CAS  Google Scholar 

  30. Li, J., Edwards, P., Burghammer, M., Villa, and C., Schertler, G.F.X. (2004) Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438.

    Google Scholar 

  31. Okada, T., Fujiyoshi, Y., Silow, M., Navarro J., Landau, E. M., and Shichida, Y. (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl. Acad. Sci., 99, 5982–5987.

    Article  PubMed  CAS  Google Scholar 

  32. Okada, T., Sugihara, M., Bondar, A.N., Elstner, M., Entel, P., and Buss,V. (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J. Mol. Biol. 342, 571–583.

    Article  PubMed  CAS  Google Scholar 

  33. Murakami, M. and Kouyama, T. (2008) Crystal structure of squid rhodopsin. Nature, 453, 363–367.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamichi, H., Buss, V., and Okada, T. (2007) Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by X-ray crystallography. Biophys. J. 92, L106-L108.

    Article  PubMed  CAS  Google Scholar 

  35. Kimura, S. R., Tebben, A. J., and Langley, D. R. (2008) Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach. Proteins: Structure, Function, and Bioinformatics 71, 1919–1929.

    Article  CAS  Google Scholar 

  36. Pei, Y., Mercier, R.W., Anday, J.K., Thakur, G.A., Zvonok, A.M., Hurst, D, Reggio, P.H., Janero, D.R., and Makriyannis, A. (2008) Ligand-binding architecture of human CB2 cannabinoid receptor: evidence for receptor subtype-specific binding motif and modeling GPCR activation. Chem. & Biol. 11, 1207–1219.

    Article  Google Scholar 

  37. Bizzantz, C., Bernard, P., Hibert, and M., Rognan, D. (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets? Proteins: Structure, Function, and Bioinformatics 50, 5–25.

    Google Scholar 

  38. Tikhonova, I.G., Sum, C.S., Neumann, S., Engel, S., Raaka, B.M., Costanzi, S., and Gershengorn, M.C. (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. Biochem. 51, 625–633.

    CAS  Google Scholar 

  39. Carter, P.H. and Tebben A.J. (2009) Chapter 12. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol. 461, 249–279.

    Article  PubMed  CAS  Google Scholar 

  40. Ballesteros, J.A. and Weinstein, H. (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors Methods Neurosci. 25, 366–428.

    Google Scholar 

  41. Rosenbaum D.M., Cherezov V., Hanson M.A., Rasmussen S.G., Thian F.S., Kobilka T.S., Choi H.J., Yao X.J., Weis W.I., Stevens R.C., and Kobilka B.K. (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  42. Ridge, K.D. and Palczewski, K. (2007) Visual rhodopsin sees the light: structure and mechanism of G protein signaling. J. Biol. Chem. 282, 9297–9301.

    Article  PubMed  CAS  Google Scholar 

  43. Gether, U., Ballesteros, J.A., Seifert, R., Sanders-Bush, E., Weinstein, and H., Kobilka, B.K. (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J. Biol. Chem. 272, 2587–2590.

    Google Scholar 

  44. Serrano-Vega, M.J., Magnani, F., Shibata, Y., and Tate, C.G. (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc. Natl. Acad. Sci., 105, 877–882.

    Article  PubMed  CAS  Google Scholar 

  45. Kobilka, B.K. (1995) Amino and carboxyl terminal modifications to facilitate the production of a G-protein coupled receptor. Anal. Biochem. 231, 269–271.

    Article  PubMed  CAS  Google Scholar 

  46. Granier, S., Kim, S., Shafer, A.M., Ratnala, V.R., Fung, J.J., Zare, R.N., and Kobilka, B. Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J. Biol. Chem. 282, 13895–13905.

    Google Scholar 

  47. Liapakis, G., Ballesteros, J.A., Papachristou, S., Chan, W.C., Chen, X., and Javitch, J.A. (2000) The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the beta 2-adrenergic receptor. J. Biol. Chem. 275 37779–37788.

    Article  PubMed  CAS  Google Scholar 

  48. Strader, C.D., Sigal, I.S., and Dixon, R.A., (1989) Structural basis for beta-adrenergic receptor function. FASEB J. 3, 1825–1832.

    PubMed  CAS  Google Scholar 

  49. Hanson M.A., Cherezov V., Griffith M.T., Roth C.B., Jaakola V.P., Chien E.Y., Velasquez J., Kuhn P., and Stevens R.C. (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Structure 16, 897–905.

    Article  PubMed  CAS  Google Scholar 

  50. Pucadyil, T.J. and Chattopadhyay, A. (2006) Role of chlolesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45, 295–333.

    Article  PubMed  CAS  Google Scholar 

  51. Ballesteros, J.A., Jensen, A.D., Liapakis, G., Rasmussen, S.G., Shi, L., Gether, U., and Javitch, J.A. (2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177.

    Article  PubMed  CAS  Google Scholar 

  52. Dror, R.O., Arlow, D.H., Borhani, D.W., Jensen, M.Ø., Piana, S., and Shaw, D.E. (2009) Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl. Acad. Sci. 106, 4689–4694.

    Article  PubMed  CAS  Google Scholar 

  53. Vanni, S., Neri, M., Tavernelli, I., and Rothlisberger, U. (2009) Observation of “ionic lock” formation in molecular dynamics simulations of wild-type β1 and β2 adrenergic receptors. Biochem. 48, 4789–4797.

    Article  CAS  Google Scholar 

  54. Mantri, M., de Graaf, O., van Veldhoven, J., Göblyös, A., von Frijtag Drabbe Künzel, J.K., Mulder-Krieger, T., Link R., de Vries, H., Beukers, M.W., Brussee, J., and Ijzerman, A.P. (2008) 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J. Med. Chem. 51, 4449–4455.

    Google Scholar 

  55. Kim, J., Jiang, Q., Glashofer, M., Yehle, S., Wess, J., and Jacobson, K.A. (1996) Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol. Pharmacol. 49, 683–691.

    PubMed  CAS  Google Scholar 

  56. Kim, J., Wess, J., van Rhee, A.M., Schöneberg, T., Jacobson, K.A. (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J. Biol. Chem. 270, 13987–13997.

    Article  PubMed  CAS  Google Scholar 

  57. Jiang, Q., Lee, B.X., Glashofer, M., van Rhee, A.M., and Jacobson, K.A. (1997) Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. J. Med. Chem. 40, 2588–2595.

    Article  PubMed  CAS  Google Scholar 

  58. Rosenbaum, D.M., Rasmussen, S.G., and Kobilka, B.K. (2008) The structure and function of G-protein-coupled receptors. Nature 459, 356–363.

    Article  Google Scholar 

  59. Shukla, A.K., Sun, J.P., and Lefkowitz, R.J. (2008) Crystallizing thinking about the β2-adrenergic receptor. Mol. Pharmacol. 73, 1333–1338.

    Article  PubMed  CAS  Google Scholar 

  60. Kobilka, B. and Schertler, G.F. (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharm. Sci. 29, 79–83.

    Article  PubMed  CAS  Google Scholar 

  61. Huber, T., Menon, S., and Sakmar, T.P. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Biochem. 47, 11013–11023.

    Google Scholar 

  62. Topiol, S. and Sabio, M. (2009) X-ray structure breakthroughs in the GPCR transmembrane region. Biochem. Pharmacol. 78, 11–20.

    Article  PubMed  CAS  Google Scholar 

  63. Blois, T.M. and Bowie, J.U. (2009) G-protein-coupled receptor structures were not built in a day. Protein Sci. 18, 1335–1342.

    Article  PubMed  CAS  Google Scholar 

  64. Hanson, M.A. and Stevens, R.C. (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17, 8–14.

    Article  PubMed  CAS  Google Scholar 

  65. Topiol, S. and Sabio, M. (2008) Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. Bioorg. Med. Chem. Lett. 18, 1598–1602.

    Article  PubMed  CAS  Google Scholar 

  66. Sabio, M., Jones, K., and Topiol, S. (2008) Bioorg. Med. Chem. Lett. 18, 5391–5395.

    Article  PubMed  CAS  Google Scholar 

  67. Kolb, P., Rosenbaum, D.M., Irwin, J.J., Fung, J.J., Kobilka, B.K., and Shoichet, B.K. (2009) Proc. Natl. Acad. Sci. 106, 6843–6848.

    Article  PubMed  CAS  Google Scholar 

  68. Irwin, J.J. and Shoichet, B.K., (2005) ZINC – A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model 45, 177–182.

    Article  PubMed  CAS  Google Scholar 

  69. de Graaf, C. and Rognan, D. (2008) Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor. J. Med. Chem. 51, 4978–4985.

    Article  PubMed  Google Scholar 

  70. Kobilka, B.K. and Deupi, X. (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406.

    Article  PubMed  CAS  Google Scholar 

  71. Reynolds, K.A., Katritch, V., and Abagyan, R. (2009) Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J. Comput. Aided Mol Des. 23, 273–288.

    Article  PubMed  CAS  Google Scholar 

  72. ICM-Pro, Molsoft L.L.C., La Jolla, CA. http://www.molsoft.com.

  73. Okuno, Y., Tamon, A., Yabuuchi, H., Niijima, S., Minowa, Y., Tonomura, K., Kunimoto, R., and Feng, C. (2008) GLIDA: GPCR--ligand database for chemical genomics drug discovery--database and tools update. Nucleic Acids Res. 36, D907–912.

    Article  PubMed  CAS  Google Scholar 

  74. Katritch, V., Reynolds, K.A., Cherezov, V., Hanson, M.A., Roth, C.B., Yeager, M., and Abagyan, R. (2009) Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J. Mol. Recognit. 22, 307–318.

    Article  PubMed  CAS  Google Scholar 

  75. Vilar, S., Karpiak, J., and Costanzi, S. (2009) Ligand and structure-based models for the prediction of ligand-receptor affinities and virtual screenings: Development and application to the beta(2)-adrenergic receptor. J. Comput. Chem. Epub ahead of print.

    Google Scholar 

  76. Costanzi, S. (2008) On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. J. Med. Chem. 51, 2907–2914.

    Article  PubMed  CAS  Google Scholar 

  77. Sali, A. and Blundell, T.L. (1993) Comparative protein modeling by satisfaction of spatial constraints. J. Mol. Biol. 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  78. Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., and Farid R. (2006) Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49, 534–553.

    Article  PubMed  CAS  Google Scholar 

  79. Ivanov, A.A., Barak, D., and Jacobson, K.A. (2009) Evaluation of homology modeling of G-protein-coupled receptors in light of the A2A adenosine receptor crystallographic structure. J. Med. Chem. 52, 3284–3292.

    Article  PubMed  CAS  Google Scholar 

  80. Kim, S.K., Gao, Z.G., Van Rompaey, P., Gross, A.S., Chen, A., Van Calenbergh, S., and Jacobson, K.A. (2003) Modeling the adenosine receptors: comparison of the binding domains of A2A agonists and antagonists. J. Med. Chem. 46, 4847–4859.

    Article  PubMed  CAS  Google Scholar 

  81. Michino, M. and Abola, E., GPCR Dock 2008 participants, Brooks, C.L., 3rd, Dixon, J.S., Moult, J., Stevens, R.C. (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat. Rev. Drug. Disc. 8, 455–463.

    Google Scholar 

  82. Mobarec, J.C., Sanchez, R., and Filizola, M. (2009) Modern homology modeling of g-protein coupled receptors: which structural template to use? J. Med. Chem. 52, 5207–5216.

    Article  PubMed  CAS  Google Scholar 

  83. Worth, C.L., Kleinau, G., and Krause, G. (2009) Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. PLoS One 4, e7011.

    Article  PubMed  Google Scholar 

  84. Knighton, D.R., Zheng, J.H., Ten Eyck, L.F., Xuong, N.H., Taylor, S.S., and Sowadski, J.M. (1991) Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420.

    Article  PubMed  CAS  Google Scholar 

  85. Johnson, L.N. (2009) Protein kinase inhibitors: contributions from structure to clinical compounds. Q. Rev. Biophys. 42, 1–40.

    Article  PubMed  CAS  Google Scholar 

  86. Hattori K, Orita M, Toda S, Imanishi M, Itou S, Nakajima Y, Tanabe D, Washizuka, K., Araki, T., Sakurai, M., Matsui, S., Imamura, E., Ueshima, K., Yamamoto, T., Yamamoto, N., Ishikawa, H., Nakano, K., Unami, N., Hamada, K., Matsumura, Y., and Takamura, F. (2009) Discovery of highly potent and selective biphenylacylsulfonamide-based beta3-adrenergic receptor agonists and molecular modeling based on the solved X-ray structure of the beta2-adrenergic receptor: part 6. Bioorg. Med. Chem. Lett. 19, 4679–4683.

    Article  PubMed  CAS  Google Scholar 

  87. Selent, J., López, L., Sanz, F., and Pastor, M. (2008) Multi-receptor binding profile of clozapine and olanzapine: a structural study based on the new beta2 adrenergic receptor template. Chem. Med. Chem. 3, 1194–1198.

    Article  PubMed  CAS  Google Scholar 

  88. Yuzlenko, O. and Kieć-Kononowicz, K. (2009) Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies. J. Comput. Chem. 30, 14–32.

    Article  PubMed  CAS  Google Scholar 

  89. Li, M., Fang, H., Du, L., Xia, L., and Wang, B. (2008) Computational studies of the binding site of alpha1A-adrenoceptor antagonists. J. Mol. Model., 14, 957–966.

    Article  PubMed  CAS  Google Scholar 

  90. Li, G., Haney, K.M., Kellogg, G.E., and Zhang, Y. (2009) Comparative docking study of anibamine as the first natural product CCR5 antagonist in CCR5 homology models. J. Chem. Inf. Model. 49, 120–132.

    Article  PubMed  CAS  Google Scholar 

  91. Sherbiny, F.F., Schiedel, A.C., Maaß, A., and Müller, C.E. (2009) Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor. J. Comput. Aided. Mol. Des. Epub ahead of print.

    Google Scholar 

  92. Kneissl, B., Leonhardt, B., Hildebrandt, A., and Tautermann, C.S. (2009) Revisiting automated G-protein coupled receptor modeling: the benefit of additional template structures for a neurokinin-1 receptor model. J. Med. Chem. 52, 3166–3173.

    Article  PubMed  CAS  Google Scholar 

  93. Dong, M., Lam, P.C., Pinon, D.I., Abagyan, R., and Miller, L.J. (2009) Elucidation of the molecular basis of cholecystokinin Peptide docking to its receptor using site-specific intrinsic photoaffinity labeling and molecular modeling. Biochem. 48, 5303–5312.

    Article  CAS  Google Scholar 

  94. Shim J.Y. (2009) Transmembrane helical domain of the cannabinoid CB1 receptor. Biophys. J. 96, 3251–3262.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Roy Kimura for providing the program to generate the snake plot in Fig. 1 and Dr. Stan Krystek for his input and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tebben, A.J., Schnur, D.M. (2010). Beyond Rhodopsin: G Protein-Coupled Receptor Structure and Modeling Incorporating the β2-adrenergic and Adenosine A2A Crystal Structures. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics