Skip to main content

Methods for the Isolation of Genes Encoding Novel PHB Cycle Enzymes from Complex Microbial Communities

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 668))

Abstract

Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henne, A., Daniel, R., Schmitz, R.A., and Gottschalk, G. (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65, 3901–3907.

    PubMed  CAS  Google Scholar 

  2. Anderson, A.J. and Dawes, E.A. (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54, 450–472.

    PubMed  CAS  Google Scholar 

  3. Zevenhuizen, L.P.T.M. (1981) Cellular glycogen, β-1,2-glucan, poly-3-hydroxybutyic acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie Van Leeuwenhoek 47, 481–497.

    Article  PubMed  CAS  Google Scholar 

  4. Madison, L.L. and Huisman, G.W. (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63, 21–53.

    PubMed  CAS  Google Scholar 

  5. Shishatskaya, E.I., Voinova, O.N., Goreva, A.V., Mogilnaya, O.A., and Volova, T.G. (2008) Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 19, 2493–2502.

    Article  PubMed  CAS  Google Scholar 

  6. Shishatskaya, E.I., Volova, T.G., Puzyr, A.P., Mogilnaya, O.A., and Efremov, S.N. (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 15, 719–728.

    Article  PubMed  CAS  Google Scholar 

  7. Holmes, P.A. (1985) Applications of PHB – a microbially produced biodegradable thermosplastic. Phys Technol 16, 32–36.

    Article  CAS  Google Scholar 

  8. Pötter, M. and Steinbüchel, A. (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6, 552–560.

    Article  PubMed  Google Scholar 

  9. Kadouri, D., Jurkevitch, E., and Okon, Y. (2003) Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69, 3244–3250.

    Article  PubMed  CAS  Google Scholar 

  10. Senior, P.J., Beech, G.A., Ritchie, G.A.F., and Dawes, E.A. (1972) The role of oxygen limitation in the formation of poly-3-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128, 1193–1201.

    PubMed  CAS  Google Scholar 

  11. Stam, H., van Verseveld, H.W., de Vries, W., and Stouhamer, A.H. (1986) Utilization of poly-β-hydroxybutyrate in free-living cultures of Rhizobium ORS571. FEMS Microbiol Lett 35, 215–220.

    CAS  Google Scholar 

  12. Stockdale, H., Ribbons, D.W., and Dawes, E.A. (1968) Occurrence of poly-3-hydroxybutyrate in the Azotobacteriaceae. J Bacteriol 95, 1798–1803.

    PubMed  CAS  Google Scholar 

  13. Senior, P.J. and Dawes, E.A. (1971) Poly-3-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijinkereii. Biochem J 125, 55–66.

    PubMed  CAS  Google Scholar 

  14. Page, W.J. and Knosp, O. (1989) Hyperproduction of poly-3-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55, 1334–1339.

    PubMed  CAS  Google Scholar 

  15. Aneja, P. and Charles, T.C. (1999) Poly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J Bacteriol 181, 849–857.

    PubMed  CAS  Google Scholar 

  16. Aneja, P., Dziak, R., Cai, G.Q., and Charles, T.C. (2002) Identification of an acetoacetyl coenzyme-A synthetase-dependent pathway for utilization of l-(+)-3-hydroxybutyrate in Sinorhizobium meliloti. J Bacteriol 184, 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  17. Charles, T.C., Cai, G.Q., and Aneja, P. (1997) Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti. Genetics 146, 1211–1220.

    PubMed  CAS  Google Scholar 

  18. Willis, L.B. and Walker, G.C. (1998) The phbC (poly-β-hydroxybutyrate synthase) gene of Rhizobium (Sinorhizobium) meliloti and characterization of phbC mutants. Can J Microbiol 44, 554–564.

    PubMed  CAS  Google Scholar 

  19. Aneja, P., Dai, M., Lacorre, D.A., Pillon, B., and Charles, T.C. (2004) Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett 239, 277–283.

    Article  PubMed  CAS  Google Scholar 

  20. Ostle, A.G. and Holt, J.G. (1982) Nile blue as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.

    PubMed  CAS  Google Scholar 

  21. Kranz, R.G., Gabbert, K.K., and Madigan, M.T. (1997) Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification. Appl Environ Microbiol 63, 3010–3013.

    PubMed  CAS  Google Scholar 

  22. Povolo, S., Tombolini, R., Morea, A., Anderson, A.J., Casella, S., and Nuti, M.P. (1994) Isolation and characterization of mutants of Rhizobium meliloti unable to synthesize poly-3-hydroxybutyrate (PHB). Can J Microbiol 40, 823–829.

    Article  CAS  Google Scholar 

  23. Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, New York.

    Google Scholar 

  24. Beringer, J.E. (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.

    PubMed  CAS  Google Scholar 

  25. Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  26. Dowling, D.N., Samrey, U., Stanley, J., and Broughton, W.J. (1987) Cloning of Rhizobium leguminosarum genes for competitive nodulation blocking on peas. J Bacteriol 169, 1345–1348.

    PubMed  CAS  Google Scholar 

  27. Jones, J.D. and Gutterson, N. (1987) An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61, 299–306.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, C., Meek, D.J., Panchal, P., Boruvka, N., Archibald, F.S., Driscoll, B.T., et al. (2006) Isolation of poly-3-hydroxbutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 72, 384–391.

    Article  PubMed  CAS  Google Scholar 

  29. Law, J. and Slepecky, R. (1961) Assay of poly-3-hydroxybutyric acid. J Bacteriol 82, 33–36.

    PubMed  CAS  Google Scholar 

  30. Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., et al. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.

    Article  PubMed  CAS  Google Scholar 

  31. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  32. Meade, H.M., Long, S.R., Ruvkun, G.B., Brown, S.E., and Ausubel, F.M. (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114–122.

    PubMed  CAS  Google Scholar 

  33. Cai, G., Driscoll, B.T., and Charles, T.C. (2000) Requirement for the enzymes acetoacetyl coenzyme-A synthetase and poly-3-hydroxybutyrate (PHB) synthase for growth of Sinorhizobium meliloti on PHB cycle intermediates. J Bacteriol 182, 2113–2118.

    Article  PubMed  CAS  Google Scholar 

  34. Aneja, P., Zachertowska, A., and Charles, T.C. (2005) Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Can J Microbiol 51, 599–604.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, C.X., Sheng, X.Y., Equi, R.C., Trainer, M.A., Charles, T.C., and Sobral, B.W.S. (2007) Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021. J Bacteriol 189, 9050–9056.

    Article  PubMed  CAS  Google Scholar 

  36. Leigh, J.A., Signer, E.R., and Walker, G.C. (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A 82, 6231–6235.

    Article  PubMed  CAS  Google Scholar 

  37. Miller-Williams, M., Loewen, P.C., and Oresnik, I.J. (2006) Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. Microbiology 152, 2049–2059.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor C. Charles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Nordeste, R.F., Trainer, M.A., Charles, T.C. (2010). Methods for the Isolation of Genes Encoding Novel PHB Cycle Enzymes from Complex Microbial Communities. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 668. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-823-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-823-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-822-5

  • Online ISBN: 978-1-60761-823-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics