Skip to main content

Screening Metagenomic Libraries for Laccase Activities

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 668))

Abstract

Laccases are multi-copper oxidoreductases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) able to oxidise a wide variety of phenolic and non-phenolic compounds. They are useful enzymes for a variety of applications, including bioremediation and craft pulp bio-bleaching as the most significant ones. There is a considerable interest to find new laccases through the exploration of biological diversity. Laccases have been found in plants, insects, and bacteria but predominantly in fungi: these enzymes have been documented in about 60 fungal strains. Microbial diversity constitutes a largely unexplored treasure chest with new laccases with a good potential for basic science and biotechnology. At present, due to our inability to cultivate most microbes, the only means of accessing the resources of the microbial world is to harvest genetic resources (“metagenomes”), which can further on be subjected to extensive screening programs. In this chapter, we provide an overview of screening methods to identify laccase-encoding genes from environmental resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thurston, C.F. (1994) The structure and function of fungal laccases. Microbiology 140, 19–26.

    Article  CAS  Google Scholar 

  2. Sariaslani, F.S. (1989) Microbial enzymes for oxidation of organic molecules. Crit Rev Biotechnol 9, 171–257.

    Article  PubMed  CAS  Google Scholar 

  3. Bourbonnais, R. and Paice, M. (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267, 99–102.

    Article  PubMed  CAS  Google Scholar 

  4. Eggert, C., Temp, U., Dean, J.F., and Eriksson, K.E. (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391, 144–148.

    Article  PubMed  CAS  Google Scholar 

  5. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E. (1996) Multicopper oxidases and oxygenases. Chem Rev 96, 2563–2605.

    Article  PubMed  CAS  Google Scholar 

  6. Camarero, S., Ibarra, D., Martínez, M.J., and Martínez, A.T. (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71, 1775–1784.

    Article  PubMed  CAS  Google Scholar 

  7. Durán, N., Rosa, M.A., D’Annibale, A., and Gianfreda, L. (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Tech 31, 907–931.

    Article  Google Scholar 

  8. Wesenberg, D., Kyriakides, I., and Agathos, S.N. (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22, 161–187.

    Article  PubMed  CAS  Google Scholar 

  9. Arias, M.E., Arenas, M., Rodríguez, J., Soliveri, J., Ball, A.S., and Hernández, M. (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69, 1953–1958.

    Article  PubMed  CAS  Google Scholar 

  10. Bertrand, T., Jolivalt, C., Btiozzo, P., Caminade, E., Joly, N., Madzak, C., et al. (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41, 7325–7333.

    Article  PubMed  CAS  Google Scholar 

  11. Gianfreda, L., Xu, F., and Bollag, J. (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3, 1–25.

    Article  CAS  Google Scholar 

  12. Huttermann, A., Mai, C., and Kharazipour, A. (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55, 387–394.

    Article  PubMed  CAS  Google Scholar 

  13. Mayer, A.M. and Staples, R.C. (2002) Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565.

    Article  PubMed  CAS  Google Scholar 

  14. Parkinson, N.M., Conyers, C.M., Keen, J.N., MacNicoll, A.D., Smith, I., and Weaver, R.J. (2003) cDNAs encoding large venom proteins from the parasitoid Pimpla hypochondriaca was identified by random sequence analysis. Comp Biochem Physiol C-Toxicol Pharmacol 134, 513–520.

    Article  PubMed  Google Scholar 

  15. Enguita, F.J., Martins, L.O., Henriques, A.O., and Carrondo, M.A. (2003) Crystal structure of a bacterial endospore coat component – A laccase with enhanced thermostability properties. J Biol Chem 278, 19416–19425.

    Article  PubMed  CAS  Google Scholar 

  16. Alexandre, G. and Zhulin, I.B. (2000) Laccases are widspread in bacteria. Trends Biotechnol 18, 41–42.

    Article  PubMed  CAS  Google Scholar 

  17. Claus, H. (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179, 145–150.

    PubMed  CAS  Google Scholar 

  18. Claus, H. (2004) Laccases: structure, reactions, distribution. Micron 35, 93–96.

    Article  PubMed  CAS  Google Scholar 

  19. Vieites, J.M., Guazzaroni, M.E., Beloqui, A., Golyshin, P.N., and Ferrer, M. (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33, 236–255.

    Article  PubMed  CAS  Google Scholar 

  20. Beloqui, A., Pita, M., Yakimov, M.M., Polaina, J., Zumárraga, M., García-Arellano, H., et al. (2005) Novel polyphenol oxidase mined from a metagenome expresion library of bovine rumen: biochemical properties, structural analysis and phylogenetic relationships. J Biol Chem 281, 22933–22942.

    Article  Google Scholar 

  21. Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., et al. (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277, 18849–18859.

    Article  PubMed  CAS  Google Scholar 

  22. Ruijssenaars, H.J. and Hartmans, S. (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65, 177–182.

    Article  PubMed  CAS  Google Scholar 

  23. Ducros, V., Brzozowski, A. M., Wilson, K. S., Brown, S. H., Ostergaard, P., Schneider, P., et al. (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nature Struct Biol 5, 310–316.

    Article  PubMed  CAS  Google Scholar 

  24. Antorini, M., Herpoel-Gimbert, I., Choinowski, T., Sigoillot, J.C., Asther, M., Winterhalter, K., et al. (2002) Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochim Biophys Acta 1594, 109–114.

    Article  PubMed  CAS  Google Scholar 

  25. Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., et al. (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Struct Biol 9, 601–605.

    PubMed  CAS  Google Scholar 

  26. McGuirl, M.A. and Dooley, D.M. (1999). Copper-containing oxidases. Curr Opin Chem Biol 3, 138–144.

    Article  PubMed  CAS  Google Scholar 

  27. Adler, E. and Eriksson, E. (1955) Guaiacylglycerol and its β-guaiacyl ether. Acta Chem Scand 9, 341–345.

    Article  CAS  Google Scholar 

  28. Zumárraga, M., Bulter, T., Shleev, S., Polaina, J., Martínez-Arias, A., Plou, et al. (2007) In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem Biol 14, 1052–1064.

    Article  PubMed  Google Scholar 

  29. Ferrer, M., Beloqui, A., Vieites, J.M., Guazzaroni, M.E., Berger, I., and Aaroni, A. (2009) Interplay of metagenomics and in vitro compartmentalization. Microb Biotechnol 2, 31–39.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrer, M., Beloqui, A., Timmis, K. N., and Golyshin P. N. (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16, 109–123.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Spanish MEC BIO2006-11738, CSD2007-00005 and GEN2006-27750-C-4-E projects. A.B thanks the Spanish MEC for a FPU fellowship. P.N.G. was supported by Grant 0313751K from the Federal Ministry for Science and Education (BMBF) within the GenoMik-Plus initiative.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Ferrer, M., Beloqui, A., Golyshin, P.N. (2010). Screening Metagenomic Libraries for Laccase Activities. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 668. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-823-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-823-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-822-5

  • Online ISBN: 978-1-60761-823-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics