Skip to main content
Book cover

Metagenomics pp 177–188Cite as

Screening for Cellulase-Encoding Clones in Metagenomic Libraries

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 668))

Abstract

Modern biotechnology has the steady need to continuously identify novel enzymes for use in biotechnological applications. In industrial applications, however, enzymes often have to function under extreme and nonnatural conditions (i.e., in the presence of solvents, high temperature and/or at extreme pH values). Cellulases have many industrial applications from the generation of bioethanol, a realistic long-term energy source, to the finishing of textiles. These industrial processes require cellulolytic activity under a range of pH, temperature, and ionic conditions, and they are usually carried out by mixtures of cellulases. Investigation of the broad diversity of cellulolytic enzymes involved in the natural degradation of cellulose is necessary for optimization of these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Streit, W.R. and Schmitz, R.A. (2004) Meta­genomics – the key to the uncultured microbes. Curr Opin Microbiol 7, 492–498.

    Article  PubMed  CAS  Google Scholar 

  2. Daniel, R. (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15, 199–204.

    Article  PubMed  CAS  Google Scholar 

  3. Schmeisser, C., Steele, H., and Streit, W.R. (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75, 955–962.

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt, T.M., DeLong, E.F., and Pace, N.R. (1991) Analysis of a marine picoplankton commu­nity by 16S rRNA gene cloning and sequencing. J Bacteriol 173, 4371–4378.

    PubMed  CAS  Google Scholar 

  5. Ferrer, M., Golyshina, O.V., Chernikova, T.N., Khachane, A.N., Reyes-Duarte, D., Santos, V.A., et al. (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7, 1996–2010.

    Article  PubMed  CAS  Google Scholar 

  6. Ferrer, M., Golyshina, O.V., Plou, F.J., Timmis, K.N., and Golyshin, P.N. (2005) A novel alpha-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem J 391, 269–276.

    Article  PubMed  CAS  Google Scholar 

  7. Beloqui, A., Pita, M., Polaina, J., Martinez-Arias, A., Golyshina, O.V., Zumarraga, M., et al. (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281, 22933–22942.

    Article  PubMed  CAS  Google Scholar 

  8. Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K.-E., and Streit, W.R. (2003) Pros­pecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69, 6235–6242.

    Article  PubMed  CAS  Google Scholar 

  9. Voget, S., Steele, H.L., and Streit, W.R. (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126, 26–36.

    Article  PubMed  CAS  Google Scholar 

  10. Grant, S., Sorokin, D.Y., Grant, W.D., Jones, B.E., and Heaphy, S. (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8, 421–429.

    Article  PubMed  CAS  Google Scholar 

  11. Rees, H.C., Grant, S., Jones, B., Grant, W.D., and Heaphy, S. (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7, 415–421.

    Article  PubMed  CAS  Google Scholar 

  12. Healy, F.G., Ray, R.M., Aldrich, H.C., Wilkie, A.C., Ingram, L.O., and Shanmugam, K.T. (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 43, 667–674.

    Article  PubMed  CAS  Google Scholar 

  13. Feng, Y., Duan, C.J., Pang, H., Mo, X.C., Wu, C.F., Yu, Y., et al. (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75, 319–328.

    Article  PubMed  CAS  Google Scholar 

  14. Pottkämper, J., Barthen, P., Ilmberger, N., Schwaneberg, U., Schenk, A., Schulte, M., et al. (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11, 957–965.

    Article  Google Scholar 

  15. Guo, H., Feng, Y., Mo, X., Duan, C., Tang, J., and Feng, J. (2008) Cloning and expression of a beta-glucosidase gene umcel3G from meta­genome of buffalo rumen and characterization of the translated product. Sheng Wu Gong Cheng Xue Bao 24, 232–238.

    PubMed  CAS  Google Scholar 

  16. Pang, H., Zhang, P., Duan, C.J., Mo, X.C., Tang, J.L., and Feng, J.X. (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58, 404–408.

    Article  PubMed  CAS  Google Scholar 

  17. Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., et al. (2007) Metagenomic and functional ana­lysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565.

    Article  PubMed  CAS  Google Scholar 

  18. Heinze, T., Schwikal, K., and Barthel, S. (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5, 520–525.

    Article  PubMed  CAS  Google Scholar 

  19. Swatloski, R.P., Spear, S.K., Holbrey, J.D., and Rogers, R.D. (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 124, 4974–4975.

    Article  PubMed  CAS  Google Scholar 

  20. Wu, J., Zhang, J., Zhang, H., He, J., Ren, Q., and Guo, M. (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromole-cules 5, 266–268.

    Article  PubMed  CAS  Google Scholar 

  21. Beguin, P. and Aubert, J.P. (1994) The biolo­gical degradation of cellulose. FEMS Microbiol Rev 13, 25–58.

    Article  PubMed  CAS  Google Scholar 

  22. Birsan, C., Johnson, P., Joshi, M., MacLeod, A., McIntosh, L., Monem, V., et al. (1998) Mechanisms of cellulases and xylanases. Biochem Soc Trans 26, 156–160.

    PubMed  CAS  Google Scholar 

  23. Hilden, L. and Johansson, G. (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26, 1683–1693.

    Article  PubMed  CAS  Google Scholar 

  24. Bayer, E.A., Chanzy, H., Lamed, R., and Shoham, Y. (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8, 548–557.

    Article  PubMed  CAS  Google Scholar 

  25. Kumar, R., Singh, S., and Singh, O.V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35, 377–391.

    Article  PubMed  CAS  Google Scholar 

  26. Ando, S., Ishida, H., Kosugi, Y., and Ishikawa, K. (2002) Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl Environ Microbiol 68, 430–433.

    Article  PubMed  CAS  Google Scholar 

  27. Lynd, L.R. and Zhang, Y. (2002) Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng 77, 467–475.

    Article  PubMed  CAS  Google Scholar 

  28. Schwarz, W.H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56, 634–649.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, Y.H. and Lynd, L.R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88, 797–824.

    Article  PubMed  CAS  Google Scholar 

  30. Bolam, D.N., Ciruela, A., McQueen-Mason, S., Simpson, P., Williamson, M.P., Rixon, J.E., et al. (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331(Pt 3), 775–781.

    PubMed  CAS  Google Scholar 

  31. Carvalho, A.L., Goyal, A., Prates, J.A., Bolam, D.N., Gilbert, H.J., Pires, V.M., et al. (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site.J Biol Chem 279, 34785–34793.

    Article  PubMed  CAS  Google Scholar 

  32. Coutinho, J.B., Gilkes, N.R., Kilburn, D.G., Warren, RA.J., and Miller, R.C., Jr. (1993) The nature of the cellulose-binding domain effects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiol Lett 113, 211–217.

    Article  CAS  Google Scholar 

  33. Fontes, C.M., Clarke, J.H., Hazlewood, G.P., Fernandes, T.H., Gilbert, H.J., and Ferreira, L.M. (1997) Possible roles for a non-modular, thermostable and proteinase-resistant cellulase from the mesophilic aerobic soil bacterium Cellvibrio mixtus. Appl MicrobiolBiotechnol 48, 473–479.

    Article  PubMed  CAS  Google Scholar 

  34. Cazemier, A.E., Verdoes, JC., Op den Camp, HJ., Hackstein, J.H., and van Ooyen, A.J. (1999) A beta-1,4-endoglucanase-encoding gene from Cellulomonas pachnodae. Appl Microbiol Biotechnol 52, 232–239.

    Article  PubMed  CAS  Google Scholar 

  35. Sanchez-Torres, J., Perez, P., and Santamaria, R.I. (1996) A cellulase gene from a new alkalophilic Bacillus sp. (strain N186-1). Its cloning, nucleotide sequence and expression in Escheri­chia coli. Appl MicrobiolBiotechnol 46, 149–155.

    Article  PubMed  CAS  Google Scholar 

  36. Solingen, P., Meijer, D., Kleij, W., Barnett, C., Bolle, R., Power, S., et al. (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5, 333.

    Article  PubMed  Google Scholar 

  37. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., and Goodman, R.M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5, R245–R249.

    Article  PubMed  CAS  Google Scholar 

  38. Brosius, J., Ullrich, A., Raker, M.A., Gray, A., Dull, T.J., Gutell, R.R., et al. (1981) Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 6, 112–118.

    Article  PubMed  CAS  Google Scholar 

  39. Kane, M.D., Poulsen, L.K., and Stahl, D.A. (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59, 682–686.

    PubMed  CAS  Google Scholar 

  40. Teather, R.M. and Wood, P.J. (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43, 777–780.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Ilmberger, N., Streit, W.R. (2010). Screening for Cellulase-Encoding Clones in Metagenomic Libraries. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 668. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-823-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-823-2_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-822-5

  • Online ISBN: 978-1-60761-823-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics