Advertisement

Recipient Block TMA Technique

  • Martina Mirlacher
  • Ronald SimonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 664)

Abstract

New high-throughput screening technologies have led to the identification of hundreds of genes with a potential role in cancer or other diseases. One way to prioritize the leads obtained in such studies is to analyze a large number of tissues for candidate gene expression. The TMA methodology is now an established and frequently used tool for high-throughput tissue analysis. The recipient block technology is the “classical” method of TMA making. In this method, minute cylindrical tissue punches typically measuring 0.6 mm in diameter are removed from donor tissue blocks and are transferred into empty “recipient” paraffin blocks. Up to 1,000 different tissues can be analyzed in one TMA block. The equipment is affordable and easy to use in places where basic skills in histology are available.

Key words

Tissue microarray High throughput tissue analysis Recipient block technique 

References

  1. 1.
    Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP. (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Battifora H. (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55:244–8.PubMedGoogle Scholar
  3. 3.
    Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P, Maurer R, Spichtin H, Torhorst J, Popovska S, Simon R, Sauter G. (2006) Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer 118:2190–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Simon R, Nocito A, Hübscher T, Bucher C, Torhorst J, Schraml P, Bubendorf L, Mihatsch MJ, Moch H, Wilber K, Schötzau A, Kononen J, Sauter G. (2001) Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst 93:1141–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G. (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159:2249–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S, Passow-Drolet A, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, Simon R, Huland H, Sauter G, Erbersdobler A. (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP. (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91:1758–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Nocito A, Bubendorf L, Tinner EM, Suess K, Wagner U, Forster T, Kononen J, Fijan A, Bruderer J, Schmid U, Ackermann D, Maurer R, Alund G, Knonagel H, Rist M, Anabitarte M, Hering F, Hardmeier T, Schoenenberger AJ, Flury R, Jager P, Fehr JL, Schraml P, Moch H, Mihatsch MJ, Gasser T, Sauter G. (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194:349–57.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of PathologyUniversity Medical Center Hamburg EppendorfHamburgGermany

Personalised recommendations