From Gene to Clinic: TMA-Based Clinical Validation of Molecular Markers in Prostate Cancer

  • Thorsten SchlommEmail author
  • Felix KH Chun
  • Andreas Erbersdobler
Part of the Methods in Molecular Biology book series (MIMB, volume 664)


Current high-throughput screening techniques using DNA arrays have identified hundreds of new candidate biomarkers for diagnosis and risk prediction of prostate cancer. Large-scale analysis of clinical prostate cancer specimens is a key prerequisite for the validation of these genes. We have constructed a tissue microarray from more than 2,500 prostate cancers with full histo-pathological and clinical long-term follow-up data and analyzed expression and gene copy number patterns of 16 different candidate markers for their ability to predict prostate cancer progression and patient prognosis. The best candidates were used to extend established clinical prediction tools (nomograms) that were based on nonmolecular data only, such as prostate-specific antigene (PSA), clinical stage, and histological grading (Gleason grade). Using this approach, we could identify ANXA3 as an independent marker, which was capable of increasing the accuracy of the clinical nomogram, thereby fulfilling the criteria of a novel prognostic prostate cancer marker. This approach of integrating large-scale clinical and molecular variables may provide a new paradigm for the use of molecular profiling to predict the clinical outcome in prostate cancer.

Key words

Prostate cancer Tissue microarray Nomogram Translational research Molecular marker 


  1. 1.
    Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007;18:581–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Graefen M, Augustin H, Karakiewicz PI, et al. Can predictive models for prostate cancer patients derived in the United States of America be utilized in European patients? A validation study of the Partin tables. Eur Urol 2003;43:6–10; discussion 1.PubMedCrossRefGoogle Scholar
  3. 3.
    Graefen M, Noldus J, Pichlmeier U, et al. Early prostate-specific antigen relapse after radical retropubic prostatectomy: prediction on the basis of preoperative and postoperative tumor characteristics. Eur Urol 1999;36:21–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998;90:766–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Kattan MW, Potters L, Blasko JC, et al. Pretreatment nomogram for predicting freedom from recurrence after permanent prostate brachytherapy in prostate cancer. Urology 2001;58:393–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fuks Z, Leibel SA. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol 2000;18:3352–9.PubMedGoogle Scholar
  7. 7.
    Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. Jama 1997;277:1445–51.Google Scholar
  8. 8.
    Bauer JJ, Connelly RR, Seterhenn IA, et al. Biostatistical modeling using traditional preoperative and pathological prognostic variables in the selection of men at high risk for disease recurrence after radical prostatectomy for prostate cancer. J Urol 1998;159:929–33.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Amico AV, Whittington R, Malkowicz SB, et al. Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J Clin Oncol 1999;17:168–72.PubMedGoogle Scholar
  10. 10.
    Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002;20:921–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Stamey TA, McNeal JE, Yemoto CM, Sigal BM, Johnstone IM. Biological determinants of cancer progression in men with prostate cancer. Jama 1999;281:1395–400.PubMedCrossRefGoogle Scholar
  12. 12.
    Catalona WJ, Smith DS. 5-year tumor recurrence rates after anatomical radical retropubic prostatectomy for prostate cancer. J Urol 1994;152:1837–42.PubMedGoogle Scholar
  13. 13.
    Epstein JI, Partin AW, Potter SR, Walsh PC. Adenocarcinoma of the prostate invading the seminal vesicle: prognostic stratification based on pathologic parameters. Urology 2000;56:283–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Epstein JI, Pizov G, Walsh PC. Correlation of pathologic findings with progression after radical retropubic prostatectomy. Cancer 1993a;71:3582–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Gibbons RP, Correa RJ, Jr., Brannen GE, Weissman RM. Total prostatectomy for clinically localized prostatic cancer: long-term results. J Urol 1989;141:564–6.PubMedGoogle Scholar
  16. 16.
    Pound CR, Partin AW, Epstein JI, Walsh PC. Prostate-specific antigen after anatomic radical retropubic prostatectomy. Patterns of recurrence and cancer control. Urol Clin North Am 1997;24:395–406.PubMedCrossRefGoogle Scholar
  17. 17.
    Zincke H, Oesterling JE, Blute ML, Bergstralh EJ, Myers RP, Barrett DM. Long-term (15 years) results after radical prostatectomy for clinically localized (stage T2c or lower) prostate cancer. J Urol 1994;152:1850–7.PubMedGoogle Scholar
  18. 18.
    Schlomm T, Erbersdobler A, Mirlacher M, Sauter G. Molecular staging of prostate cancer in the year 2007. World J Urol 2007;25:19–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Chun FK, Karakiewicz PI, Briganti A, et al. Prostate cancer nomograms: an update. Eur Urol 2006;50:914–26; discussion 26.PubMedCrossRefGoogle Scholar
  20. 20.
    Karakiewicz PI, Briganti A, Chun FK, Valiquette L. Outcomes Research: A Methodologic Review. Eur Urol 2006.Google Scholar
  21. 21.
    Ross PL, Scardino PT, Kattan MW. A catalog of prostate cancer nomograms. J Urol 2001; 165:1562–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Bradley E, Tibshirani RJ. Monographs on statistics and applied probability: An introduction to the bootstrap. Champman and Hall/CRC 1993:275.Google Scholar
  23. 23.
    Eastham JA, Kattan MW, Scardino PT. Nomograms as predictive models. Semin Urol Oncol 2002;20:108–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Karakiewicz PI, Chun FK, Briganti A, et al. Prostate cancer nomograms are superior to neural networks. Can J Urol 2006;13 Suppl 2:18–25.PubMedGoogle Scholar
  25. 25.
    Kattan M. Statistical prediction models, artificial neural networks, and the sophism “I am a patient, not a statistic”. J Clin Oncol 2002;20: 885–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Kattan MW. Nomograms. Introduction. Semin Urol Oncol 2002;20:79–81.PubMedGoogle Scholar
  27. 27.
    Kattan MW. Judging new markers by their ability to improve predictive accuracy. J Natl Cancer Inst 2003;95:634–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Kattan MW. Comparison of Cox regression with other methods for determining prediction models and nomograms. J Urol 2003;170:S6–9; discussion S10.PubMedCrossRefGoogle Scholar
  29. 29.
    Steyerberg EW, Harrell FE, Jr., Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001;54:774–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Steyerberg EW, Harrell FE, Jr., Goodman PH. Neural networks, logistic regression, and calibration. Med Decis Making 1998;18:349–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Specht MC, Kattan MW, Gonen M, Fey J, Van Zee KJ. Predicting nonsentinel node status after positive sentinel lymph biopsy for breast cancer: clinicians versus nomogram. Ann Surg Oncol 2005;12:654–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Erbersdobler A, Fritz H, Schnoger S, et al. Tumour grade, proliferation, apoptosis, microvessel density, p53, and bcl-2 in prostate cancers: differences between tumours located in the transition zone and in the peripheral zone. Eur Urol 2002;41:40–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Bubendorf L, Kononen J, Koivisto P, et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999;59:803–6.PubMedGoogle Scholar
  34. 34.
    Heidenreich A, Aus G, Bolla M, et al. EAU Guidelines on prostate cancer. Eur Urol 2008;53:68–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Graefen M, Karakiewicz PI, Cagiannos I, et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. J Clin Oncol 2002;20:951–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Graefen M, Karakiewicz PI, Cagiannos I, et al. International validation of a preoperative nomogram for prostate cancer recurrence after radical prostatectomy. J Clin Oncol 2002;20:3206–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Suardi N, Porter CR, Reuther AM, et al. A nomogram predicting long-term biochemical recurrence after radical prostatectomy. Cancer 2008;112:1254–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Gallina A, Chun FK, Briganti A, et al. Development and split-sample validation of a nomogram predicting the probability of seminal vesicle invasion at radical prostatectomy. Eur Urol 2007;52:98–105.PubMedCrossRefGoogle Scholar
  39. 39.
    Chun FK, Briganti A, Jeldres C, et al. Tumour volume and high grade tumour volume are the best predictors of pathologic stage and biochemical recurrence after radical prostatectomy. Eur J Cancer 2007;43:536–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Steuber T, Chun FK, Erbersdobler A, et al. Development and internal validation of ­preoperative transition zone prostate cancer nomogram. Urology 2006;68: 1295–300.PubMedCrossRefGoogle Scholar
  41. 41.
    Steuber T, Graefen M, Haese A, et al. Validation of a nomogram for prediction of side specific extracapsular extension at radical prostatectomy. J Urol 2006;175:939–44; discussion 44.PubMedCrossRefGoogle Scholar
  42. 42.
    Chun FK, Steuber T, Erbersdobler A, et al. Development and internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology. Eur Urol 2006;49:820–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Augustin H, Eggert T, Wenske S, et al. Comparison of accuracy between the Partin tables of 1997 and 2001 to predict final pathological stage in clinically localized prostate cancer. J Urol 2004;171:177–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Cagiannos I, Karakiewicz P, Eastham JA, et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 2003;170:1798–803.PubMedCrossRefGoogle Scholar
  45. 45.
    Kattan MW, Eastham JA, Wheeler TM, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol 2003;170:1792–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Augustin H, Hammerer PG, Graefen M, et al. Insignificant prostate cancer in radical prostatectomy specimen: time trends and preoperative prediction. Eur Urol 2003;43:455–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Graefen M, Karakiewicz PI, Cagiannos I, et al. A validation of two preoperative nomograms predicting recurrence following radical prostatectomy in a cohort of European men. Urol Oncol 2002;7:141–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Palisaar RJ, Graefen M, Karakiewicz PI, et al. Assessment of clinical and pathologic characteristics predisposing to disease recurrence following radical prostatectomy in men with pathologically organ-confined prostate cancer. Eur Urol 2002;41:155–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Conrad S, Graefen M, Pichlmeier U, et al. Prospective validation of an algorithm with systematic sextant biopsy to predict pelvic lymph node metastasis in patients with clinically localized prostatic carcinoma. J Urol 2002;167:521–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Graefen M, Haese A, Pichlmeier U, et al. A validated strategy for side specific prediction of organ confined prostate cancer: a tool to select for nerve sparing radical prostatectomy. J Urol 2001;165:857–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Kattan MW. Evaluating a new marker’s predictive contribution. Clin Cancer Res 2004;10:822–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Katz EM, Kattan MW. How to judge a tumor marker. Nat Clin Pract Oncol 2005;2:482–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Kollermann J, Schlomm T, Bang H, et al. Expression and Prognostic Relevance of Annexin A3 in Prostate Cancer. Eur Urol 2008.Google Scholar
  54. 54.
    Torhorst J, Bucher C, Kononen J, et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 2001;159:2249–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Schlomm T, Iwers L, Kirstein P, et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 2008;21:1371–1378.Google Scholar
  56. 56.
    Schlomm T, Petersen A, Kramme I, et al. Alterations of the physiological PSMA expression patterns are associated with poor prognosis in prostate cancer. (submitted).Google Scholar
  57. 57.
    Minner S, Jessen B, Stiedenroth L, et al. Low level HER2 overexpression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer. Clin Cancer Res 2010;16:1553–1560.PubMedCrossRefGoogle Scholar
  58. 58.
    Schlomm T, Kirstein P, Iwers L, et al. Clinical significance of epidermal growth factor receptor protein overexpression and gene copy number gains in prostate cancer. Clin Cancer Res 2007;13:6579–84.PubMedCrossRefGoogle Scholar
  59. 59.
    Kollermann J, Schlomm T, Bang H, et al. Expression and prognostic relevance of annexin a3 in prostate cancer. Eur Urol 2008;54:1314–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Fleischmann A, Schlomm T, Huland H, et al. Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients. Clin Cancer Res 2008;14:7838–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Fleischmann A, Schlomm T, Köllermnn J, et al. Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 2009;69:976–981.PubMedCrossRefGoogle Scholar
  62. 62.
    Lessard L, Bégin LR, Schlomm T, et al. Validation of NF-kappaB p65 as a prostate cancer prognostic marker on a large cohort of European patients. J Clin Oncol 2008;26: abstr.11055.Google Scholar
  63. 63.
    Currlin E, Eichelberg C, Graefen M, et al. Neuroendokrine Differenzierung des Prosta-takarzinoms korreliert mit erhöhter Tumor-progression. Jahrestagung der Vereinigung Norddeutscher Urologen (VNU) 2007.Google Scholar
  64. 64.
    El Gammal AT, Brüchmann M, Zustin J, et al. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res 2010;16:56–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thorsten Schlomm
    • 1
    Email author
  • Felix KH Chun
    • 1
  • Andreas Erbersdobler
    • 2
  1. 1.Martini-Clinic, Prostate Cancer CenterUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of PathologyCharité – University Medical CenterBerlinGermany

Personalised recommendations