Digital Microscopy for Boosting Database Integration and Analysis in TMA Studies

  • Tibor KrenacsEmail author
  • Levente Ficsor
  • Sebestyen Viktor Varga
  • Vivien Angeli
  • Bela Molnar
Part of the Methods in Molecular Biology book series (MIMB, volume 664)


The enormous amount of clinical, pathological, and staining data to be linked, analyzed, and correlated in a tissue microarray (TMA) project makes digital slides ideal to be integrated into TMA database systems. With the help of a computer and dedicated software tools, digital slides offer dynamic access to microscopic information at any magnification with easy navigation, annotation, measurement, and archiving features. Advanced slide scanners work both in transmitted light and fluorescent modes to support biomarker testing with immunohistochemistry, immunofluorescence or fluorescence in situ hybridization (FISH). Currently, computer-driven integrated systems are available for creating TMAs, digitalizing TMA slides, linking sample and staining data, and analyzing their results. Digital signals permit image segmentation along color, intensity, and size for automated object quantification where digital slides offer superior imaging features and batch processing. In this chapter, the workflow and the advantages of digital TMA projects are demonstrated through the project-based MIRAX system developed by 3DHISTECH and supported by Zeiss.

The enhanced features of digital slides compared with those of still images can boost integration and intelligence in TMA database management systems, offering essential support for high-throughput biomarker testing, for example, in tumor progression/prognosis, drug discovery, and target therapy research.

Key words

Digital microscopy Tissue microarray Database integration Validated scoring Image segmentation Correlation analysis 


  1. 1.
    Kallioniemi, O-P., Wagner, U., Kononen, J., Sauter, G. (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum. Mol. Gen. 10:657–662.PubMedCrossRefGoogle Scholar
  2. 2.
    Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M.J., Sauter, G., Kallioniemi, O.P. (1998) Tissue microarrays for high through-put molecular profiling of tumor specimens. Nat. Med. 4:844–847.PubMedCrossRefGoogle Scholar
  3. 3.
    Kayser, K., Molnar, B., and Weinstein, R.S. (2006) Virtual slides technology. In: K. Kayser, B. Molnar, and R.S. Weinstein (eds.), Virtual microscopy: fundamentals, applications, perspectives of electronic tissue-based diagnosis. VSV Publlication, Berlin, pp. 103–123.Google Scholar
  4. 4.
    Marinelli, R.J., Montgomery, K., Liu, C.L., Shah, N.H., Prapong, W., Nitzberg, M., Zachariah, Z.K., Sherlock, G.J., Natkunam, Y., West, R.B., van de Rijn, M., Brown, P.O., Ball, C.A. (2008) The Stanford tissue microarray database. Nucleic Acids Res. 36:D871–D817PubMedCrossRefGoogle Scholar
  5. 5.
    Faith, D.A., Isaacs, W.B., Morgan, J.D., Fedor, H.L., Hicks, J.L., Mangold, L.A., Walsh, P.C., Partin, A.W., Platz, E.A., Luo, J., De Marzo, A.M. (2004) Trefoil factor 3 over-expression in prostatic carcinoma: prognostic importance using tissue microarrays. Prostate. 61:215–227.PubMedCrossRefGoogle Scholar
  6. 6.
    Thallinger, G.G., Baumgartner, K., Pirklbauer, M., Uray, M., Pauritsch, E., Mehes, G., Buck, C.R., Zatloukal, K., Trajanoski, Z. (2007) TAMEE: data management and analysis for tissue microarrays. BMC Bioinformatics. 8:81.PubMedCrossRefGoogle Scholar
  7. 7.
    Kajdacsy-Balla, A., Geynisman, J.M., Macias, V., Setty, S., Nanaji, N.M., Berman, J.J., Dobbin, K., Melamed, J., Kong, X., Bosland, M., Orenstein, J., Bayerl, J., Becich, M.J., Dhir, R., Datta, M.W. (2007) Practical aspects of planning, building, and interpreting tissue microarrays: the Cooperative Prostate Cancer Tissue Resource experience. J. Mol. Histol. 38:113–121.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, H.W., Park, Y.R., Sim, J., Park, R.W., Kim, W.H., Kim, J.H. (2006) The tissue microarray object model: a data model for storage, analysis, and exchange of tissue microarray experimental data. Arch. Pathol. Lab. Med.130:1004–1013.PubMedGoogle Scholar
  9. 9.
    Berman, J.J., Datta, M., Kajdacsy-Balla, A., Melamed, J., Orenstein, J., Dobbin, K., Patel, A., Dhir, R., Becich, M.J. (2004) The tissue microarray data exchange specification: implementation by the Cooperative Prostate Cancer Tissue Resource. BMC Bioinformatics. 27:5–19.Google Scholar
  10. 10.
    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Page, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P-H., Trajanoski, Z., Fridman, W-H., Page, F. (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1965.PubMedCrossRefGoogle Scholar
  11. 11.
    Hober, S. and Uhlen, M. (2008) Human protein atlas and the use of microarray technologies. Curr. Opin. Biotechnol. 19:30–35. DOI  10.1016/j.copbio. 2007.11.006.PubMedCrossRefGoogle Scholar
  12. 12.
    Stromberg, S., Bjorklund, M. G., Asplund, C., Skollermo, A., Persson, A., Wester, K., Kampf, C., Nilsson, P., Andersson, A. C., Uhlen, M., Kononen, J., Ponten, F., Asplund, A. (2007) A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics 7:2142–2150PubMedCrossRefGoogle Scholar
  13. 13.
    Papay, J., Krenacs, T., Moldvay, J., Stelkovics, E., Furak, J., Molnar, B., Kopper, L. (2007) Immunophenotypic profiling of non-small cell lung cancer progression using the tissue microarray approach. Appl. Immunohistochem. Mol. Morphol. 15:19–30, 2007PubMedCrossRefGoogle Scholar
  14. 14.
    Stelkovics, E., Korom, I., Marczinovits, I., Molnar, J., Rasky, K., Raso, E., Ficsor, E., Molnar, B., Kopper, L., Krenacs, T. (2008) Collagen XVII/BP180 protein expression in squamous cell carcinoma of the skin detected with novel monoclonal antibodies in archived tissues using tissue microarrays and digital microscopy. Appl. Immunohistochem. Mol. Morphol. 16:433–441PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson, W.F., Luo, S., Chatterjee, N., Rosenberg, P.S., Matsuno, R.K., Goodman, M.T., Hernandez, B.Y., Reichman, M., Dolled-Filhart, M.P., O’Regan, R.M., Garcia-Closas, M., Perou, C.M., Jatoi, I., Cartun, R,W., Sherman, M.E. (2008) Human epidermal growth factor receptor-2 and estrogen receptor expression, a demonstration project using the residual tissue repository of the Surveillance, Epidemiology, and End Results (SEER) program. Breast Cancer Res. Treat. 113:189–196PubMedCrossRefGoogle Scholar
  16. 16.
    Turbin, D.A., Leung, S., Cheang, M.C., Kennecke, H.A., Montgomery, K.D., McKinney, S., Treaba, D.O., Boyd, N., Goldstein, L.C., Badve, S., Gown, A.M., van de Rijn, M., Nielsen, T.O., Gilks, C.B., Huntsman, D.G. (2007) Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res. Treat. 110:417–426PubMedCrossRefGoogle Scholar
  17. 17.
    Rubin, M.A., Dunn, R., Strawderman, M., Pienta, K.J. (2002) Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am. J. Surg. Pathol. 26:312–319.PubMedCrossRefGoogle Scholar
  18. 18.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D, (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863–14868PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, C.L., Prapong, W., Natkunam, Y., Alizadeh, A., Montgomery, K., Gilks, C.B., Rijn, M. (2002) Software tools for high-throughput analysis and archiving of immunohistochemistry staining data obtained with tissue microarrays. Am. J. Pathol. 161:1557–1565PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tibor Krenacs
    • 1
    Email author
  • Levente Ficsor
    • 2
  • Sebestyen Viktor Varga
    • 2
  • Vivien Angeli
    • 2
  • Bela Molnar
    • 2
  1. 1.Department of Pathology and Experimental Cancer ResearchBudapestHungary
  2. 2.Department of Internal MedicineSemmelweis UniversityBudapestHungary

Personalised recommendations