Skip to main content

Systems Biology and Inflammation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 662))

Abstract

Inflammation is a complex, multiscale biological response to threats – both internal and external – to the body, which is also required for proper healing of injured tissue. In turn, damaged or dysfunctional tissue stimulates further inflammation. Despite continued advances in characterizing the cellular and molecular processes involved in the interactions between inflammation and tissue damage, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective therapies for various inflammatory conditions. We have suggested the concept of translational systems biology, defined as a focused application of computational modeling and engineering principles to pathophysiology primarily in order to revise clinical practice. This chapter reviews the existing, translational applications of computational simulations and related approaches as applied to inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  2. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669

    Article  CAS  PubMed  Google Scholar 

  3. Doyle J, Csete M (2007) Rules of engagement. Nature 446:860

    Article  CAS  PubMed  Google Scholar 

  4. Keramaris NC, Kanakaris NK, Tzioupis C, Kontakis G, Giannoudis PV (2008) Translational research: from benchside to bedside. Injury 39:643–650

    Article  CAS  PubMed  Google Scholar 

  5. Food and Drug Administration (2004) Innovation or stagnation: challenge and opportunity on the critical path to new medical products. 1–38

    Google Scholar 

  6. Anonymous (2006) NIH roadmap for medical research: research teams

    Google Scholar 

  7. Anonymous (2007) http://nihroadmap.nih.gov/2008initiatives.asp

  8. Snoep JL, Westerhoff HV (2005) From isolation to integration, a systems biology approach for building the silicon cell. In: Alberghina L, Westerhoff HV (eds) Systems biology: definitions and perspectives. Springer, Berlin/Heidelberg, p 7

    Google Scholar 

  9. Sauer U, Heinemann M, Zamboni N (2007) Genetics. Getting closer to the whole picture. Science 316:550–551

    Article  CAS  PubMed  Google Scholar 

  10. Noble D (2006) The music of life. Oxford University Press, Oxford

    Google Scholar 

  11. Nguyen A, Yaffe MB (2003) Proteomics and systems biology approaches to signal transduction in sepsis. Crit Care Med 31:S1–S6

    Article  CAS  PubMed  Google Scholar 

  12. Yue H, Brown M, Knowles J, Wang H et al (2006) Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-kappaB signalling pathway. Mol Biosyst 2:640–649

    Article  CAS  PubMed  Google Scholar 

  13. Gilchrist M, Thorsson V, Li B et al (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  CAS  PubMed  Google Scholar 

  14. Park SG, Lee T, Kang HY et al (2006) The influence of the signal dynamics of activated form of IKK on NF-kappaB and anti-apoptotic gene expressions: a systems biology approach. FEBS Lett 580:822–830

    Article  CAS  PubMed  Google Scholar 

  15. Cobb JP, O’Keefe GE (2004) Injury research in the genomic era. Lancet 363:2076–2083

    Article  CAS  PubMed  Google Scholar 

  16. Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  CAS  PubMed  Google Scholar 

  17. Cobb JP, Mindrinos MN, Miller-Graziano C et al (2005) Application of genome-wide expression analysis to human health and disease. Proc Natl Acad Sci USA 102:4801–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brownstein BH, Logvinenko T, Lederer JA et al (2006) Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiol Genomics 24:298–309

    Article  CAS  PubMed  Google Scholar 

  19. Liu T, Qian WJ, Gritsenko MA et al (2006) High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics 5:1899–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Omenn GS (2006) Strategies for plasma proteomic profiling of cancers. Proteomics 6:5662–5673

    Article  CAS  PubMed  Google Scholar 

  21. Ahrens CH, Wagner U, Rehrauer HK et al (2007) Current challenges and approaches for the synergistic use of systems biology data in the scientific community. EXS 97:277–307

    PubMed  Google Scholar 

  22. Steinfath M, Repsilber D, Scholz M et al (2007) Integrated data analysis for genome-wide research. EXS 97:309–329

    CAS  PubMed  Google Scholar 

  23. Tanke HJ (2007) Genomics and proteomics: the potential role of oral diagnostics. Ann N Y Acad Sci 1098:330–334

    Article  CAS  PubMed  Google Scholar 

  24. Kourtidis A, Eifert C, Conklin DS (2007) RNAi applications in target validation. Ernst Schering Res Found Workshop 1–21

    Google Scholar 

  25. An G, Hunt CA, Clermont G, Neugebauer E, Vodovotz Y (2007) Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J Crit Care 22:169–175

    Article  PubMed  PubMed Central  Google Scholar 

  26. An G, Vodovotz Y (2008) Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 29:277–285

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4:1–6

    Article  CAS  Google Scholar 

  28. Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO et al (2009) Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 217:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  29. An G (2001) Agent-based computer simulation and SIRS: building a bridge between basic science and clinical trials. Shock 16:266–273

    Article  CAS  PubMed  Google Scholar 

  30. An G (2004) In-silico experiments of existing and hypothetical cytokine-directed clinical trials using agent based modeling. Crit Care Med 32:2050–2060

    Article  CAS  PubMed  Google Scholar 

  31. Vodovotz Y, Clermont G, Chow C, An G (2004) Mathematical models of the acute inflammatory response. Curr Opin Crit Care 10:383–390

    Article  PubMed  Google Scholar 

  32. Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y et al (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32:2061–2070

    Article  PubMed  Google Scholar 

  33. Chow CC, Clermont G, Kumar R et al (2005) The acute inflammatory response in diverse shock states. Shock 24:74–84

    Article  CAS  PubMed  Google Scholar 

  34. Vodovotz Y, Chow CC, Bartels J et al (2006) In silico models of acute inflammation in animals. Shock 26:235–244

    Article  CAS  PubMed  Google Scholar 

  35. Prince JM, Levy RM, Bartels J et al (2006) In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol Med 12:88–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagoa CE, Bartels J, Baratt A et al (2006) The role of initial trauma in the host’s response to injury and hemorrhage: insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 26:592–600

    Article  CAS  PubMed  Google Scholar 

  37. Ben David I, Price SE, Bortz DM et al (2005) Dynamics of intrapulmonary bacterial growth in a murine model of repeated microaspiration. Am J Respir Cell Mol Biol 33:476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mi Q, Rivière B, Clermont G et al (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-b1. Wound Rep Reg 15:617–682

    Article  Google Scholar 

  39. Hancioglu B, Swigon D, Clermont G (2007) A dynamical model of human immune response to influenza A virus infection. J Theor Biol 246:70–86

    Article  CAS  PubMed  Google Scholar 

  40. Kumar R, Chow CC, Bartels J et al (2008) A mathematical simulation of the inflammatory response to anthrax infection. Shock 29:104–111

    PubMed  PubMed Central  Google Scholar 

  41. An G, Lee I (2000) Complexity, emergence and pathophysiology: using agent based computer simulation to characterize the non-adaptive inflammatory response (Manuscript # 344). InterJournal Complex Systems: http://www.interjournal.org May

  42. An G, Faeder JR (2009) Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 217:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. An G (2008) Introduction of a agent based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor Biol Med Model 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. An G (2009) A model of TLR4 signaling and tolerance using a qualitative, particle event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 217:43–52

    Article  CAS  PubMed  Google Scholar 

  45. Kumar R, Clermont G, Vodovotz Y, Chow CC (2004) The dynamics of acute inflammation. J Theor Biol 230:145–155

    Article  CAS  PubMed  Google Scholar 

  46. Reynolds A, Rubin J, Clermont G et al (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242:220–236

    Article  CAS  PubMed  Google Scholar 

  47. Day J, Rubin J, Vodovotz Y et al (2006) A reduced mathematical model of the acute inflammatory response: II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242:237–256

    Article  CAS  PubMed  Google Scholar 

  48. Bagci EZ, Vodovotz Y, Billiar TR et al (2006) Bistability in apoptosis: roles of bax, Bcl-2 and mitochondrial permeability transition pores. Biophys J 90:1546–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bagci EZ, Vodovotz Y, Billiar TR et al (2008) Computational insights on the competing effects of nitric oxide in regulating apoptosis. PLoS One 3:e2249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rivière B, Epshteyn Y, Swigon D, Vodovotz Y (2009) A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with Toll-like receptor 4 demonstrates inherent preconditioning behavior. Math Biosci 217:19–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Daun S, Rubin J, Vodovotz Y et al (2008) An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol 253:843–853

    Article  CAS  PubMed  Google Scholar 

  52. Torres A, Bentley T, Bartels J et al (2008) Mathematical modeling of post-hemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock 32:172–178

    Article  Google Scholar 

  53. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160:97–133

    Article  CAS  PubMed  Google Scholar 

  54. Seydel R (1994) Practical bifurcation and stability analysis. Springer, New York, NY

    Google Scholar 

  55. Mi Q, Riviere B, Cetin S et al (2007) One-dimensional elastic continuum model of epithelial wound healing. Biophys J 93:3745–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20:3289–3291

    Article  CAS  PubMed  Google Scholar 

  57. Faeder JR, Hlavacek WS, An G (2007) BioNetGen: a tool for formal knowledge representation of intracellular pathways. Shock 27(S1):S31

    Google Scholar 

  58. Roa LM, Gomez-Cia T, Cantero A (1988) Analysis of burn injury by digital simulation. Burns Incl Therm Inj 14:201–209

    Article  CAS  PubMed  Google Scholar 

  59. Roa L, Gomez-Cia T, Cantero A (1990) Pulmonary capillary dynamics and fluid distribution after burn and inhalation injury. Burns 16:25–35

    Article  CAS  PubMed  Google Scholar 

  60. Bert J, Gyenge C, Bowen B et al (1997) Fluid resuscitation following a burn injury: implications of a mathematical model of microvascular exchange. Burns 23:93–105

    Article  CAS  PubMed  Google Scholar 

  61. Rosinski M, Yarmush ML, Berthiaume F (2004) Quantitative dynamics of in vivo bone marrow neutrophil production and egress in response to injury and infection. Ann Biomed Eng 32:1108–1119

    Article  PubMed  Google Scholar 

  62. Feng Q, Zhao-Yan H, Zheng-Kang Z, Li-Xing S (2005) The establishment of the mathematical model of the 2nd degree burn injury of human tissues and its application. Conf Proc IEEE Eng Med Biol Soc 3:2918–2921

    PubMed  Google Scholar 

  63. Mercer GN, Sidhu HS (2005) Modeling thermal burns due to airbag deployment. Burns 31:977–980

    Article  CAS  PubMed  Google Scholar 

  64. Lv YG, Liu J, Zhang J (2006) Theoretical evaluation of burns to the human respiratory tract due to inhalation of hot gas in the early stage of fires. Burns 32:436–446

    Article  PubMed  Google Scholar 

  65. Denman PK, McElwain DL, Harkin DG, Upton Z (2007) Mathematical modelling of aerosolised skin grafts incorporating keratinocyte clonal subtypes. Bull Math Biol 69:157–179

    Article  PubMed  Google Scholar 

  66. Crampin EJ, Halstead M, Hunter P et al (2004) Computational physiology and the Physiome Project. Exp Physiol 89:1–26

    Article  PubMed  Google Scholar 

  67. An G (2004) Agent based model of cell culture epithelial barrier function: using computer simulation in conjunction with a basic science model. Shock 21(Suppl 2):S13

    Article  Google Scholar 

  68. An G (2008) Dynamic knowledge representation using agent based modeling: ontology instantiation and verification of conceptual models. In: Maly I (ed) Systems biology: methods in molecular biology series. Humana, Totowa, NJ

    Google Scholar 

  69. An G, Feinman R, Xu D, Deitch E (2004) In-silico unification of different basic science models of gut epithelial barrier function using agent based modeling. Crit Care Med 32:A95

    Article  Google Scholar 

  70. An G (2005) Multi-hierarchical agent-based modeling of the inflammatory aspects of the gut. J Crit Care 20:383

    Article  Google Scholar 

  71. An G (2006) Agent based models of pulmonary epithelial barrier function. Proc Am Thorac Soc 3:A309

    Google Scholar 

  72. An G (2004) Computer simulations of multiple organ failure secondary to shock and sepsis with a multi-tissue, endothelial level agent based model. Shock 21S2:66

    Article  Google Scholar 

  73. Lengeler JW (2000) Metabolic networks: a signal-oriented approach to cellular models. Biol Chem 381:911–920

    Article  CAS  PubMed  Google Scholar 

  74. Smye SW, Clayton RH (2002) Mathematical modelling for the new millenium: medicine by numbers. Med Eng Phys 24:565–574

    Article  PubMed  Google Scholar 

  75. Goldstein B, Faeder JR et al (2004) Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 4:445–456

    Article  CAS  PubMed  Google Scholar 

  76. Mogilner A, Wollman R et al (2006) Modeling mitosis. Trends Cell Biol 16:88–96

    Article  CAS  PubMed  Google Scholar 

  77. Stevens A, Sogaard-Andersen L (2005) Making waves: pattern formation by a cell-surface-associated signal. Trends Microbiol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  78. Hlavacek WS, Faeder JR et al (2006) Rules for modeling signal-transduction systems. Sci STKE 2006:re6

    PubMed  Google Scholar 

  79. Batada NN (2004) CNplot: visualizing pre-clustered networks. Bioinformatics 20:1455–1456

    Article  CAS  PubMed  Google Scholar 

  80. Iragne F, Nikolski M et al (2005) ProViz: protein interaction visualization and exploration. Bioinformatics 21:272–274

    Article  CAS  PubMed  Google Scholar 

  81. Aragues R, Jaeggi D, Oliva B (2006) PIANA: protein interactions and network analysis. Bioinformatics 22:1015–1017

    Article  CAS  PubMed  Google Scholar 

  82. Baitaluk M, Qian X et al (2006) PathSys: integrating molecular interaction graphs for systems biology. BMC Bioinform 7:55

    Article  CAS  Google Scholar 

  83. Lee DY, Yun C et al (2006) WebCell: a web-based environment for kinetic modeling and dynamic simulation of cellular networks. Bioinformatics 22:1150–1151

    Article  CAS  PubMed  Google Scholar 

  84. Mathew JP, Taylor BS et al (2007) From bytes to bedside: data integration and computational biology for translational cancer research. PLoS Comput Biol 3:e12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. An G (2007) Crossing levels of biological organization: agent based modeling of genomic/proteomic data. Inflamm Res 56(Suppl 2):s208–s209

    Google Scholar 

  86. An G (2006) Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care 21:105–110

    Article  PubMed  Google Scholar 

  87. Wakeland W, Macovsky L, An G (2007) A hybrid simulation for studying acute inflammatory response. 39–46

    Google Scholar 

  88. Ropella GEP, Hunt CA, Sheikh-Bahaei S (2005) Methodological considerations of heuristic modeling of biological systems. Proceedings of the 9th world multi-conference on systemics, cybernetics and informatics

    Google Scholar 

  89. Weston AD, Hood L (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 3:179–196

    Article  CAS  PubMed  Google Scholar 

  90. Chang S, Baratt A et al (2006) Mathematical model predicting outcomes of sepsis patients treated with Xigris(R): ENHANCE trial. Shock 25:70–71

    Article  Google Scholar 

  91. Hart J (2002) Inflammation. 1: its role in the healing of acute wounds. J Wound Care 11:205–209

    Article  CAS  PubMed  Google Scholar 

  92. Hart J (2002) Inflammation. 2: its role in the healing of chronic wounds. J Wound Care 11:245–249

    Article  CAS  PubMed  Google Scholar 

  93. Goldring SR (2003) Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int 73:97–100

    Article  CAS  PubMed  Google Scholar 

  94. Guilak F, Fermor B et al (2004) The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop 423:17–26

    Article  PubMed  Google Scholar 

  95. Ramadori G, Saile B (2004) Inflammation, damage repair, immune cells, and liver fibrosis: specific or nonspecific, this is the question. Gastroenterology 127:997–1000

    Article  CAS  PubMed  Google Scholar 

  96. Redd MJ, Cooper L et al (2004) Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci 359:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  98. Murray JD, Maini PK, Tranquillo R (1988) Mechanochemical models for generating biological pattern and form in development. Phys Rep 171:59–84

    Article  Google Scholar 

  99. Murray JD (1989) Mathematical biology. Springer, Heidelberg (Germany)

    Book  Google Scholar 

  100. Sherratt JA, Murray JD (1990) Models of epidermal wound healing. Proc Biol Sci 241:29–36

    Article  CAS  PubMed  Google Scholar 

  101. Tranquillo RT, Murray JD (1992) Continuum model of fibroblast-driven wound contraction: inflammation-mediation. J Theor Biol 158:135–172

    Article  CAS  PubMed  Google Scholar 

  102. Tranquillo RT, Murray JD (1993) Mechanistic model of wound contraction. J Surg Res 55:233–247

    Article  CAS  PubMed  Google Scholar 

  103. Cook J (1995) A mathematical model for dermal wound healing: wound contraction and scar formation [dissertation]. University of Washington, Seattle

    Google Scholar 

  104. Olsen L, Sherratt JA, Maini PK (1995) A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J Theor Biol 177:113–128

    Article  CAS  PubMed  Google Scholar 

  105. Dallon JC, Sherratt JA, Maini PK (2001) Modeling the effects of transforming growth factor-beta on extracellular matrix alignment in dermal wound repair. Wound Repair Regen 9:278–286

    Article  CAS  PubMed  Google Scholar 

  106. Sherratt JA, Dallon JC (2002) Theoretical models of wound healing: past successes and future challenges. C R Biol 325:557–564

    Article  PubMed  Google Scholar 

  107. Walker DC, Hill G et al (2004) Agent-based computational modeling of epithelial cell monolayers: predicting the effect of exogenous calcium concentration on the rate of wound closure. IEEE Trans Nanobioscience 3:153–163

    Article  CAS  PubMed  Google Scholar 

  108. Walker DC, Southgate J et al (2004) The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems 76:89–100

    Article  CAS  PubMed  Google Scholar 

  109. Upperman JS, Lugo B et al (2007) Mathematical modeling in NEC – a new look at an ongoing problem. J Pediatr Surg 42:445–453

    Article  PubMed  Google Scholar 

  110. Hackam DJ, Upperman JS et al (2005) Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 14:49–57

    Article  PubMed  Google Scholar 

  111. Li NYK, Verdolini K et al (2008) A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 3:e2789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mesarovic MD, Sreenath SN, Keene JD (2004) Search for organising principles: understanding in systems biology. Syst Biol (Stevenage) 1:19–27

    Article  CAS  Google Scholar 

  113. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  114. Mollen KP, Anand RJ et al (2006) Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock 26:430–437

    Article  CAS  PubMed  Google Scholar 

  115. Tsung A, Sahai R et al (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Izuishi K, Tsung A et al (2006) Cutting edge: high-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injury. J Immunol 176:7154–7158

    Article  CAS  PubMed  Google Scholar 

  117. Yang R, Harada T et al (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 12:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsung A, Zheng N et al (2007) Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 81:119–128

    Article  CAS  PubMed  Google Scholar 

  119. Fan J, Li Y et al (2007) Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol 178:6573–6580

    Article  CAS  PubMed  Google Scholar 

  120. Tsung A, Klune JR et al (2007) HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204:2913–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Klune JR, Dhupar R et al (2008) HMGB1: endogenous danger signaling. Mol Med 14:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Klune JR, Billiar TR, Tsung A (2008) HMGB1 preconditioning: therapeutic application for a danger signal? J Leukoc Biol 83:558–563

    Article  CAS  PubMed  Google Scholar 

  123. Aneja RK, Tsung A, Sjodin H, Gefter JV, Delude RL et al (2008) Preconditioning with high mobility group box 1 (HMGB1) induces lipopolysaccharide (LPS) tolerance. J Leukoc Biol 84(5):1326–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. El GM (2007) HMGB1 modulates inflammatory responses in LPS-activated macrophages. Inflamm Res 56:162–167

    Article  CAS  Google Scholar 

  126. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82

    Article  CAS  PubMed  Google Scholar 

  127. Barclay D, Zamora R, Torres A, Namas R, Steed D et al (2008) A simple, rapid, and convenient Luminex™-compatible method of tissue isolation. J Clin Lab Anal 22:278–281

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kobbe P, Kaczorowski D, Vodovotz Y, Tzioupis C, Mollen KP et al (2008) Local exposure of bone components to injured soft tissue induces Toll-like-receptor-4 dependent systemic inflammation with acute lung injury. Shock 30:686–691

    Article  CAS  PubMed  Google Scholar 

  129. Kobbe P, Vodovotz Y, Kaczorowski D, Mollen KP, Billiar TR et al (2008) Patterns of cytokine release and evolution of remote organ dysfunction after bilateral femur fracture. Shock 30:43–47

    Article  CAS  PubMed  Google Scholar 

  130. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA et al (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653

    Article  CAS  PubMed  Google Scholar 

  131. Cohen AM, Hersh WR (2005) A survey of current work in biomedical text mining. Brief Bioinform 6:57–71

    Article  CAS  PubMed  Google Scholar 

  132. Spasic I, Ananiadou S, McNaught J, Kumar A (2005) Text mining and ontologies in biomedicine: making sense of raw text. Brief Bioinform 6:239–251

    Article  CAS  PubMed  Google Scholar 

  133. Marshall JC (2004) Through a glass darkly: the brave new world of in silico modeling. Crit Care Med 32:2157–2159

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contributions to this work of the following investigators, students, and postdoctoral fellows: Arie Baratt, Timothy R. Billiar, Frederick D. Busche, David Carney, Carson Chow, Gilles Clermont, Gregory Constantine, Judy Day, Edwin Dietch, Russell Delude, Joyeeta Dutta-Moscato, G. Bard Ermentrout, James Faeder, Rena Feinman, Ali Ghuma, Mitchell P. Fink, David Hackam, Rukmini Kumar, Claudio Lagoa, Ryan M. Levy, Nicole Li, Qi Mi, Maxim Mikheev, Rajaie Namas, Gary Nieman, Patricio Polanco, Jose M. Prince, Juan Carlos Puyana, Angela Reynolds, Beatrice Riviere, Jonathan Rubin, Matthew Rosengart, David L. Steed, Joshua Sullivan, David Swigon, Andres Torres, Jeffrey Upperman, Katherine Verdolini, Ivan Yotov, Ruben Zamora, and Sven Zenker. Additionally, several excellent technicians (Derek Barclay, David Gallo, and Binnie Betten) contributed to this work. We would also like to thank Alan Russell and Clifford Brubaker for their unwavering support. This work was supported in part by the National Institutes of Health grants R01-GM-67240, P50-GM-53789, R33-HL-089082, R01-HL080926, and R01-HL-76157; National Institute on Disability and Rehabilitation Research grant H133E070024; as well as grants from the Commonwealth of Pennsylvania, the Pittsburgh Lifesciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative. Dr. Vodovotz is a cofounder of and consultant to Immunetrics, Inc., which has licensed from the University of Pittsburgh the rights to commercialize aspects of the mathematical modeling of inflammation. Dr. Vodovotz’s involvement with Immunetrics is monitored by the University of Pittsburgh’s Entrepreneurial Oversight Committee. Dr. An is also a consultant to Immunetrics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vodovotz, Y., An, G. (2010). Systems Biology and Inflammation. In: Yan, Q. (eds) Systems Biology in Drug Discovery and Development. Methods in Molecular Biology, vol 662. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-800-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-799-0

  • Online ISBN: 978-1-60761-800-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics