Skip to main content

Derivation of Large-Scale Cellular Regulatory Networks from Biological Time Series Data

  • Protocol
  • First Online:
Systems Biology in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 662))

  • 2140 Accesses

Abstract

Pharmacological agents and other perturbants of cellular homeostasis appear to nearly universally affect the activity of many genes, proteins, and signaling pathways. While this is due in part to nonspecificity of action of the drug or cellular stress, the large-scale self-regulatory behavior of the cell may also be responsible, as this typically means that when a cell switches states, dozens or hundreds of genes will respond in concert. If many genes act collectively in the cell during state transitions, rather than every gene acting independently, models of the cell can be created that are comprehensive of the action of all genes, using existing data, provided that the functional units in the model are collections of genes. Techniques to develop these large-scale cellular-level models are provided in detail, along with methods of analyzing them, and a brief summary of major conclusions about large-scale cellular networks to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drigues N, Poltyrev T, Bejar C, Weinstock M, Youdim MB (2003) cDNA gene expression profile of rat hippocampus after chronic treatment with antidepressant drugs. J Neural Transm 110:1413–1436

    Article  CAS  PubMed  Google Scholar 

  2. Natsoulis G, El Ghaoui L, Lanckriet GR, Tolley AM, Leroy F, Dunlea S, Eynon BP, Pearson CI, Tugendreich S, Jarnagin K (2005) Classification of a large microarray data set: algorithm comparison and analysis of drug signatures. Genome Res 15:724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Slatter JG, Templeton IE, Castle JC, Kulkarni A, Rushmore TH, Richards K, He Y, Dai X, Cheng OJ, Caguyong M, Ulrich RG (2006) Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica 36:938–962

    Article  CAS  PubMed  Google Scholar 

  4. Gilman AG, Simon MI, Bourne HR, Harris BA, Long R, Ross EM, Stull JT, Taussig R, Arkin AP, Cobb MH, Cyster JG, Devreotes PN, Ferrell JE, Fruman D, Gold M, Weiss A, Berridge MJ, Cantley LC, Catterall WA, Coughlin SR, Olson EN, Smith TF, Brugge JS, Botstein D, Dixon JE, Hunter T, Lefkowitz RJ, Pawson AJ, Sternberg PW, Varmus H, Subramaniam S, Sinkovits RS, Li J, Mock D, Ning Y, Saunders B, Sternweis PC, Hilgemann D, Scheuermann RH, DeCamp D, Hsueh R, Lin KM, Ni Y, Seaman WE, Simpson PC, O’Connell TD, Roach T, Choi S, Eversole-Cire P, Fraser I, Mumby MC, Zhao Y, Brekken D, Shu H, Meyer T, Chandy G, Heo WD, Liou J, O’Rourke N, Verghese M, Mumby SM, Han H, Brown HA, Forrester JS, Ivanova P, Milne SB, Casey PJ, Harden TK, Doyle J, Gray ML, Michnick S, Schmidt MA, Toner M, Tsien RY, Natarajan M, Ranganathan R, Sambrano GR (2002) Overview of the alliance for cellular signaling. Nature 420:703–706

    Article  CAS  PubMed  Google Scholar 

  5. Zhu X, Hart R, Chang MS, Kim JW, Lee SY, Cao YA, Mock D, Ke E, Saunders B, Alexander A, Grossoehme J, Lin KM, Yan Z, Hsueh R, Lee J, Scheuermann RH, Fruman DA, Seaman W, Subramaniam S, Sternweis P, Simon MI, Choi S (2004) Analysis of the major patterns of B cell gene expression changes in response to short-term stimulation with 33 single ligands. J Immunol 173:7141–7149

    Article  CAS  PubMed  Google Scholar 

  6. Deininger MW, Druker BJ (2003) Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 55:401–423

    Article  CAS  PubMed  Google Scholar 

  7. Balabanov S, Bartolovic K, Komor M, Kanz L, Hofmann WK, Brümmendorf TH (2005) Gene expression profiling of normal hematopoietic progenitor cells under treatment with imatinib in vitro. Leukemia 19:1483–1485

    Article  CAS  PubMed  Google Scholar 

  8. Kerr DJ, Workman P (1994) New molecular targets for cancer chemotherapy. Salem, MA USA: CRC Press: 1–194

    Google Scholar 

  9. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  CAS  PubMed  Google Scholar 

  10. Waddington CH (1956) Principles of embryology. Allen and Unwin Ltd., London

    Google Scholar 

  11. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  CAS  PubMed  Google Scholar 

  12. Bar-Yam Y, Epstein IR (2004) Response of complex networks to stimuli. Proc Natl Acad Sci USA 101:4341–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Perspective: evolution and detection of genetic robustness. Evolution 57:1959–1972

    PubMed  Google Scholar 

  14. Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med 77:469–480

    Article  CAS  PubMed  Google Scholar 

  15. Ao P, Galas D, Hood L, Zhu X (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med Hypotheses 70:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701

    Article  PubMed  Google Scholar 

  17. Bang AG, Carpenter MK (2008) Deconstructing pluripotency. Science 320:320–321

    Article  Google Scholar 

  18. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  CAS  PubMed  Google Scholar 

  19. Bar-Yam Y, Harmon D, de Bivort B (2009) Systems biology. Attractors and democratic dynamics. Science 323:1016–1017

    Article  CAS  PubMed  Google Scholar 

  20. Sui AI, Wiltshire T, Bataloc S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker W, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  Google Scholar 

  21. Tyler AL, Asselbergs FW, Williams SM, Moore JH (2009) Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31:220–227

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kestler HA, Wawra C, Kracher B, Kühl M (2008) Network modeling of signal transduction: establishing the global view. Bioessays 30:1110–1125

    Article  CAS  PubMed  Google Scholar 

  23. Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P (1988) c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55:917–924

    Article  CAS  PubMed  Google Scholar 

  24. Cortes P, Flores O, Reinberg D (1992) Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Mol Cell Biol 12:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Haeseleer P, Wen X, Fuhrman S, Somogyi R (1999) Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput, 41–52

    Google Scholar 

  26. Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301:102–105

    Article  CAS  PubMed  Google Scholar 

  27. Tegner J, Yeung MK, Hasty J, Collins JJ (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 100:5944–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Bivort B, Huang S, Bar-Yam Y (2004) Dynamics of cellular level function and regulation derived from murine expression array data. Proc Natl Acad Sci USA 101:17687–17692

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Bivort B, Huang S, Bar-Yam Y (2007) Empirical multiscale networks of cellular regulation. PLoS Comput Biol 3:1968–1978

    Article  PubMed  Google Scholar 

  30. Haye A, Dehouck Y, Kwasigroch JM, Bogaerts P, Rooman M (2009) Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series. Phys Biol 6:016004

    Article  PubMed  Google Scholar 

  31. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Kamat V, Dougherty ER, Bittner ML, Meltzer PS, Trent JM (2002) Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18:1207–1215

    Article  CAS  PubMed  Google Scholar 

  33. Koren A, Tirosh I, Barkai N (2007) Autocorrelation analysis reveals widespread spatial biases in microarray experiments. BMC Genomics 8:164

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gorban AN, Kegl B, Wunsch DC, Zinovyev A (2008) Principle manifolds for data visualization and dimension reduction. Springer-Verlag, Berlin

    Book  Google Scholar 

  35. Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New York, NY, USA

    Book  Google Scholar 

  36. Jolliffe IT (1986) Principal component analysis. Springer-Verlag, New York, NY, USA

    Book  Google Scholar 

  37. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377

    CAS  PubMed  Google Scholar 

  38. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson JJ, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87

    Article  CAS  PubMed  Google Scholar 

  40. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2:E9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22:86–92

    Article  CAS  PubMed  Google Scholar 

  43. Ihmels J, Bergmann S, Berman J, Barkai N (2005) Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 1:e39

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, CA, USA

    Google Scholar 

  45. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    Article  CAS  PubMed  Google Scholar 

  46. MacQueen JB (1967) Proceedings of the 5th Berkeley symposium on mathematical statistics and probability 1, 281–297

    Google Scholar 

  47. Kohonen T (2001) Self-organizing maps. Springer, Berlin, Heidelberg, Germany

    Book  Google Scholar 

  48. Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11:1425–1433

    Article  Google Scholar 

  49. Rao TS (1993) Developments in time series analysis. Chapman & Hall, London, UK

    Book  Google Scholar 

  50. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  Google Scholar 

  51. Weaver W, Shannon CE (1949) The mathematical theory of communication. University of Illinois Press, Urbana, pp 3–28

    Google Scholar 

  52. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Series B 36:111–147

    Google Scholar 

  53. Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol Pharmacol 58:771–777

    CAS  PubMed  Google Scholar 

  54. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–244

    Article  CAS  PubMed  Google Scholar 

  55. Torgerson WS (1958) Theory and methods of scaling. Wiley, New York, NY, USA

    Google Scholar 

  56. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–4957

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Jay Strader for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. de Bivort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Bivort, B.L. (2010). Derivation of Large-Scale Cellular Regulatory Networks from Biological Time Series Data. In: Yan, Q. (eds) Systems Biology in Drug Discovery and Development. Methods in Molecular Biology, vol 662. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-800-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-799-0

  • Online ISBN: 978-1-60761-800-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics