Skip to main content

Immunoinformatics and Systems Biology Methods for Personalized Medicine

  • Protocol
  • First Online:
Systems Biology in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 662))

Abstract

The immune system plays an important role in the development of personalized medicine for a variety of diseases including cancer, autoimmune diseases, and infectious diseases. Immunoinformatics, or computational immunology, is an emerging area that provides fundamental methodologies in the study of immunomics, that is, immune-related genomics and proteomics. The integration of immunoinformatics with systems biology approaches may lead to a better understanding of immune-related diseases at various systems levels. Such methods can contribute to translational studies that bring scientific discoveries of the immune system into better clinical practice. One of the most intensely studied areas of the immune system is immune epitopes. Epitopes are important for disease understanding, host–pathogen interaction analyses, antimicrobial target discovery, and vaccine design. The information about genetic diversity of the immune system may help define patient subgroups for individualized vaccine or drug development. Cellular pathways and host immune-pathogen interactions have a crucial impact on disease pathogenesis and immunogen design. Epigenetic studies may help understand how environmental changes influence complex immune diseases such as allergy. High-throughput technologies enable the measurements and catalogs of genes, proteins, interactions, and behavior. Such perception may contribute to the understanding of the interaction network among humans, vaccines, and drugs, to enable new insights of diseases and therapeutic responses. The integration of immunomics information may ultimately lead to the development of optimized vaccines and drugs tailored to personalized prevention and treatment. An immunoinformatics portal containing relevant resources is available at http://immune.pharmtao.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rapin N, Kesmir C, Frankild S et al (2006) Modelling the human immune system by combining bioinformatics and systems biology approaches. J Biol Phys 32:335–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brusic V, Petrovsky N (2003) Immuno-informatics – the new kid in town. Novartis Found Symp 254:3–13, discussion 13–22, 98–101, 250–252

    Article  CAS  PubMed  Google Scholar 

  3. Yan Q (2005) Pharmacogenomics and systems biology of membrane transporters. Mol Biotechnol 29:75–88

    Article  CAS  PubMed  Google Scholar 

  4. Yan Q (2008) Bioinformatics databases and tools in virology research: an overview. In Silico Biol 8:71–85

    CAS  PubMed  Google Scholar 

  5. Ebert LM, Liu YC, Clements CS et al (2009) A long, naturally presented immunodominant epitope from NY-ESO-1 tumor antigen: implications for cancer vaccine design. Cancer Res 69:1046–1054

    Article  CAS  PubMed  Google Scholar 

  6. Evans MC (2008) Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Devel 11:233–241

    CAS  PubMed  Google Scholar 

  7. Peters B, Sidney J, Bourne P et al (2005) The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. NIAID Category A, B, and C Priority Pathogens. Available at http://www3.niaid.nih.gov/topics/BiodefenseRelated/Biodefense/research/CatA.html. Accessed June 2009

  9. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinform 7:131

    Article  Google Scholar 

  10. Bhasin M, Raghava GP (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195–3204

    Article  CAS  PubMed  Google Scholar 

  11. Toseland CP, Clayton DJ, McSparron H et al (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yan Q (2003) Pharmacogenomics of membrane transporters: an overview. Methods Mol Biol 227:1–20

    CAS  PubMed  Google Scholar 

  13. Lefranc MP, Giudicelli V, Ginestoux C et al (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37:D1006–D1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  15. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  16. Pagni M, Ioannidis V, Cerutti L et al (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433–W437

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dutta S, Burkhardt K, Swaminathan GJ et al (2008) Data deposition and annotation at the worldwide protein data bank. Methods Mol Biol 426:81–101

    Article  CAS  PubMed  Google Scholar 

  18. Yan Q (2008) The integration of personalized and systems medicine: bioinformatics support for pharmacogenomics and drug discovery. Methods Mol Biol 448:1–19

    Article  CAS  PubMed  Google Scholar 

  19. Wang SS, Bratti MC, Rodriguez AC et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Onay VU, Briollais L, Knight JA et al (2006) SNP-SNP interactions in breast cancer susceptibility. BMC Cancer 6:114

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robinson J, Marsh SG (2007) IPD: the Immuno Polymorphism Database. Methods Mol Biol 409:61–74

    Article  CAS  PubMed  Google Scholar 

  22. Horton R, Gibson R, Coggill P et al (2008) Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuler MM, Donnes P, Nastke MD et al (2005) SNEP: SNP-derived epitope prediction program for minor H antigens. Immunogenetics 57:816–820

    Article  CAS  PubMed  Google Scholar 

  24. Halling-Brown M, Quartey-Papafio R, Travers PJ et al (2006) SiPep: a system for the prediction of tissue-specific minor histocompatibility antigens. Int J Immunogenet 33:289–295

    Article  CAS  PubMed  Google Scholar 

  25. Gardy JL, Lynn DJ, Brinkman FS et al (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30:249–262

    Article  CAS  PubMed  Google Scholar 

  26. Lynn DJ, Winsor GL, Chan C et al (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218

    Article  PubMed  PubMed Central  Google Scholar 

  27. Driscoll T, Dyer MD, Murali TM et al (2009) PIG – the pathogen interaction gateway. Nucleic Acids Res 37:D647–D650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McSparron H, Blythe MJ, Zygouri C et al (2003) JenPep: a novel computational information resource for immunobiology and vaccinology. J Chem Inf Comput Sci 43:1276–1287

    Article  CAS  PubMed  Google Scholar 

  29. Chatr-aryamontri A, Ceol A, Peluso D et al (2009) VirusMINT: a viral protein interaction database. Nucleic Acids Res 37:D669–D673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okuda S, Yamada T, Hamajima M et al (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423–W426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthews L, Gopinath G, Gillespie M et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xenarios I, Salwinski L, Duan XJ et al (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horton P, Park KJ, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martino DJ, Prescott SL (2009) Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 65:7–15

    Article  PubMed  Google Scholar 

  38. Tomasi TB, Magner WJ, Khan AN (2006) Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 55:1159–1184

    Article  PubMed  Google Scholar 

  39. Setiadi AF, David MD, Seipp RP et al (2007) Epigenetic control of the immune escape mechanisms in malignant carcinomas. Mol Cell Biol 27:7886–7894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amoreira C, Hindermann W, Grunau C (2003) An improved version of the DNA Methylation database (MethDB). Nucleic Acids Res 31:75–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nam MJ, Madoz-Gurpide J, Wang H et al (2003) Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics 3:2108–2115

    Article  CAS  PubMed  Google Scholar 

  42. Wolter TR, Wong R, Sarkar SA et al (2009) DNA microarray analysis for the identification of innate immune pathways implicated in virus-induced autoimmune diabetes. Clin Immunol 132:103–115

    Article  CAS  PubMed  Google Scholar 

  43. Soreq L, Israel Z, Bergman H et al (2008) Advanced microarray analysis highlights modified neuro-immune signaling in nucleated blood cells from Parkinson’s disease patients. J Neuroimmunol 201–202:227–236

    Article  PubMed  Google Scholar 

  44. Korb M, Rust AG, Thorsson V et al (2008) The Innate Immune Database (IIDB). BMC Immunol 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hijikata A, Kitamura H, Kimura Y et al (2007) Construction of an open-access database that integrates cross-reference information from the transcriptome and proteome of immune cells. Bioinformatics 23:2934–2941

    Article  CAS  PubMed  Google Scholar 

  46. Barrett T, Edgar R (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yan, Q. (2010). Immunoinformatics and Systems Biology Methods for Personalized Medicine. In: Yan, Q. (eds) Systems Biology in Drug Discovery and Development. Methods in Molecular Biology, vol 662. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-800-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-799-0

  • Online ISBN: 978-1-60761-800-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics