Skip to main content

Sequence-Based High Resolution Chromosomal Comparative Genomic Hybridization (CGH)

  • Protocol
  • First Online:
  • 6011 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 659))

Abstract

We aimed to devise an appropriate method to directly link the fluorescence profile of chromosomal copy number alterations detected by chromosomal comparative genomic hybridization (cCGH) or any other hybridization or staining information with the genome sequence data. Our goal was to establish an internal anchoring system that could facilitate profile alignment and thus increase the resolution of cCGH. We were able to achieve the alignment of chromosomes with gene mapping data by superimposition of (a) the fluorescence intensity pattern of a sequence-specific fluorochrome (GGCC binding specificity), (b) the cCGH fluorescence intensity profile of individual chromosomes, and (c) the GGCC motif density profile extracted from a genome sequence database. The adjustment of these three pieces of information allowed us to precisely localize, in cytobands and mega base pairs (Mb), regions of genomic alterations such as gene amplifications, gains, or losses. The combined visualization of sequence information and cCGH data together with application of the Warp tool, presented here, considerably improves the cCGH accuracy by increasing its resolution from 10 to 20 Mb to less than 2 Mb.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kallioniemi, A., Kallioniemi, O. P., Piper, J., Tanner, M., Stokke, T., Chen, L., Smith, H. S., Pinkel, D., Gray, J. W., and Waldman, F. M. (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization, Proc Natl Acad Sci U S A 91, 2156–2160.

    Article  PubMed  CAS  Google Scholar 

  2. Lichter, P., Bentz, M., and Joos, S. (1995) Detection of chromosomal aberrations by means of molecular cytogenetics: painting of chromosomes and chromosomal subregions and comparative genomic hybridization, Methods Enzymol 254, 334–359.

    Article  PubMed  CAS  Google Scholar 

  3. Lichter, P., Joos, S., Bentz, M., and Lampel, S. (2000) Comparative genomic hybridization: uses and limitations, Semin Hematol 37, 348–357.

    Article  PubMed  CAS  Google Scholar 

  4. Stock, C., Kager, L., Fink, F. M., Gadner, H., and Ambros, P. F. (2000) Chromosomal regions involved in the pathogenesis of osteosarcomas, Genes Chromosomes Cancer 28, 329–336.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, N. (2002) Methodologies in cancer cytogenetics and molecular cytogenetics, Am J Med Genet 115, 118–124.

    Article  PubMed  Google Scholar 

  6. Garnis, C., Buys, T. P., and Lam, W. L. (2004) Genetic alteration and gene expression modulation during cancer progression, Mol Cancer 3, 9.

    Article  PubMed  Google Scholar 

  7. Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., and Pinkel, D. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors, Science 258, 818–821.

    Article  PubMed  CAS  Google Scholar 

  8. Kallioniemi, O. P., Kallioniemi, A., Piper, J., Isola, J., Waldman, F. M., Gray, J. W., and Pinkel, D. (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors, Genes Chromosomes Cancer 10, 231–243.

    Article  PubMed  CAS  Google Scholar 

  9. Bentz, M., Plesch, A., Stilgenbauer, S., Dohner, H., and Lichter, P. (1998) Minimal sizes of deletions detected by comparative genomic hybridization, Genes Chromosomes Cancer 21, 172–175.

    Article  PubMed  CAS  Google Scholar 

  10. Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W. L., Chen, C., Zhai, Y., Dairkee, S. H., Ljung, B. M., Gray, J. W., and Albertson, D. G. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays, Nat Genet 20, 207–211.

    Article  PubMed  CAS  Google Scholar 

  11. Schweizer, D. (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI, Chromosoma 58, 307–324.

    Article  PubMed  CAS  Google Scholar 

  12. Schweizer, D., and Ambros, P. F. (1994) Chromosome banding. Stain combinations for specific regions, Methods Mol Biol 29, 97–112.

    PubMed  CAS  Google Scholar 

  13. Hou, M. H., Robinson, H., Gao, Y. G., and Wang, A. H. (2004) Crystal structure of the [Mg2+-(chromomycin A3)2]-d(TTGGCCAA)2 complex reveals GGCC binding specificity of the drug dimer chelated by a metal ion, Nucleic Acids Res 32, 2214–2222.

    Article  PubMed  CAS  Google Scholar 

  14. Ambros, P. F., and Sumner, A. T. (1987) Correlation of pachytene chromomeres and metaphase bands of human chromosomes, and distinctive properties of telomeric regions, Cytogenet Cell Genet 44, 223–228.

    Article  PubMed  CAS  Google Scholar 

  15. Kowalska, A., Bozsaky, E., Ramsauer, T., Rieder, D., Bindea, G., Lorch, T., Trajanoski, Z., and Ambros, P. F. (2007) A new platform linking chromosomal and sequence information, Chromosome Res 15, 327–339.

    PubMed  CAS  Google Scholar 

  16. Kowalska, A., Brunner, B., Bozsaky, E., Chen, Q. R., Stock, C., Lorch, T., Khan, J., and Ambros, P. F. (2008) Sequence based high resolution chromosomal CGH, Cytogenet Genome Res 121, 1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Schweizer, D. (1981) Counterstain-enhanced chromosome banding, Hum Genet 57, 1–14.

    PubMed  CAS  Google Scholar 

  18. Aviv, A., Levy, D., and Mangel, M. (2003) Growth, telomere dynamics and successful and unsuccessful human aging, Mech Ageing Dev 124, 829–837.

    Article  PubMed  CAS  Google Scholar 

  19. Riethman, H., Ambrosini, A., and Paul, S. (2005) Human subtelomere structure and variation, Chromosome Res 13, 505–515.

    Article  PubMed  CAS  Google Scholar 

  20. Ambrosini, A., Paul, S., Hu, S., and Riethman, H. (2007) Human subtelomeric duplicon structure and organization, Genome Biol 8, R151.

    Article  PubMed  Google Scholar 

  21. Saitoh, Y., and Laemmli, U. K. (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold, Cell 76, 609–622.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bettina Brunner for excellent technical assistance, Cornelia Stock for valuable suggestions and overall enormous help, and Marion Zavadil for proofreading. We also gratefully acknowledge Thomas Lörch (MetaSystems, Germany) as well as Zlatko Trajanoski, Dietmar Rieder, Gabriela Bindea, and Thomas Ramsauer (Institute for Genomics and Bioinformatics, Graz University of Technology) for the very helpful collaboration. This work was supported by St. Anna Kinderkrebsforschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Ambros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kowalska, A., Bozsaky, E., Ambros, P.F. (2010). Sequence-Based High Resolution Chromosomal Comparative Genomic Hybridization (CGH). In: Bridger, J., Volpi, E. (eds) Fluorescence in situ Hybridization (FISH). Methods in Molecular Biology, vol 659. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-789-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-789-1_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-788-4

  • Online ISBN: 978-1-60761-789-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics