Skip to main content

Mapping of Phosphorylation Sites by LC-MS/MS

  • Protocol
  • First Online:
LC-MS/MS in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 658))

Abstract

Reversible protein phosphorylation ranks among the most important post-translational modifications that occurs in the cell. It is therefore highly relevant to elucidate the phosphorylation states of a given biological system, albeit challenging. Most notably the often low stoichiometry of phosphorylation is inherently incompatible with standard LC-MS analysis of a complex protein digest mixture, primarily due to the relative low dynamic range of current mass analyzers. Therefore a need for specific enrichment of phosphorylated peptides or proteins exists. Significant progress surrounding the biochemical analysis of reversible protein phosphorylation in the past years has led to the development of several new techniques to isolate or enrich phosphopeptides, particularly in large-scale analyses. This chapter deals with three such examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, L., and Porath, J. (1986) Isolation of phosphoproteins by immobilized metal (Fe-3+) affinity-chromatography. Anal. Biochem. 154, 250–254.

    Article  PubMed  CAS  Google Scholar 

  2. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873–886.

    Article  PubMed  CAS  Google Scholar 

  3. Pinkse, M. W. H., Uitto, P. M., Hilhorst, M. J., Ooms, B., and Heck, A. J. R. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC–ESI–MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935–3943.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou, H., Watts, J. D., and Aebersold, R. A (2001) Systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378.

    Article  PubMed  CAS  Google Scholar 

  5. Tao, W. A. et al. (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat. Methods 2, 591–598.

    Article  PubMed  CAS  Google Scholar 

  6. Bodenmiller, B., Mueller, L. N., Pedrioli, P. G., Pflieger, D., Jünger, M. A., Eng, J. K., Aebersold, R., Tao, W. A. (2007) An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol. Biosyst. 4, 275–286.

    Article  Google Scholar 

  7. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B., and Aebersold, R. (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods. 4(3), 231–237.

    Article  PubMed  CAS  Google Scholar 

  8. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  9. Yates, J. R., 3rd, Eng, J. K., McCormack, A. L., and Schieltz, D. (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67(8), 1426–1436.

    Article  PubMed  CAS  Google Scholar 

  10. Pan, C., Gnad, F., Olsen, J. V., and Mann, M. (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8(21), 4534–4546.

    Article  PubMed  CAS  Google Scholar 

  11. Villén, J., and Gygi, S. P. (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. (10), 1630–1638.

    Google Scholar 

  12. Bodenmiller, B., Campbell, D., Gerrits, B., Lam, H., Jovanovic, M., Picotti, P., Schlapbach, R., and Aebersold, R. (2008) PhosphoPep―a database of protein phosphorylation sites in model organisms. Nat. Biotechnol. 26(12), 1339–1340.

    Article  PubMed  CAS  Google Scholar 

  13. Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., and Horning, S. (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 78(7), 2113–2120.

    Article  PubMed  CAS  Google Scholar 

  14. Villén, J., Beausoleil, S. A., and Gygi, S. P. (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8(21), 4444–4452.

    Article  PubMed  Google Scholar 

  15. Bastide, F., Meissner, G., Fleischer, S., and Post, R. L. (1973) Similarity of the active site of phosphorylation of the adenosine triphosphatase for transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle. J. Biol. Chem. 248, 8385–8391.

    PubMed  CAS  Google Scholar 

  16. Hultquist, D. E. (1968) The preparation and characterization of phosphorylated derivatives of histidine. Biochim. Biophys. Acta 153, 329–340.

    Article  PubMed  CAS  Google Scholar 

  17. Pas, H. H., and Robillard, G. T. (1988) S-Phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EII(Mtl). Biochemistry 27, 5835–5839.

    Article  PubMed  CAS  Google Scholar 

  18. Wakim, B. T., and Aswad, G. D. (1994) Ca(2+)–calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells. J. Biol. Chem. 269, 2722–2727.

    PubMed  CAS  Google Scholar 

  19. Gordon, J. A. (1991) Use of vanadate as protein–phosphotyrosine phosphatase inhibitor. Methods Enzymol. 201, 477–482.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gerrits, B., Bodenmiller, B. (2010). Mapping of Phosphorylation Sites by LC-MS/MS. In: Cutillas, P., Timms, J. (eds) LC-MS/MS in Proteomics. Methods in Molecular Biology, vol 658. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-780-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-780-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-779-2

  • Online ISBN: 978-1-60761-780-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics