Skip to main content

Mapping Protein–Protein Interactions by Quantitative Proteomics

  • Protocol
  • First Online:
LC-MS/MS in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 658))

Abstract

Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein–protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gingras, A. C., Gstaiger, M., Raught, B., and Aebersold, R. (2007) Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell. Biol. 8, 645–654.

    Article  PubMed  CAS  Google Scholar 

  2. Vermeulen, M., Hubner, N. C., and Mann, M. (2008) High confidence determination of specific protein–protein interactions using quantitative mass spectrometry. Curr. Opin. Biotechnol. 19, 331–337.

    Article  PubMed  CAS  Google Scholar 

  3. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A. R., Sassi, H., Nielsen, P. A., Rasmussen, K. J., Andersen, J. R., Johansen, L. E., Hansen, L. H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B. D., Matthiesen, J., Hendrickson, R. C., Gleeson, F., Pawson, T., Moran, M. F., Durocher, D., Mann, M., Hogue, C. W., Figeys, D., Tyers, M. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

  4. Gavin, A. C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L. J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M. A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A. M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J. M., Kuster, B., Bork, P., Russell, R. B., Superti-Furga, G. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636.

    Article  PubMed  CAS  Google Scholar 

  5. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A. P., Punna, T., Peregrin-Alvarez, J. M., Shales, M., Zhang, X., Davey, M., Robinson, M. D., Paccanaro, A., Bray, J. E., Sheung, A., Beattie, B., Richards, D. P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M. M., Vlasblom, J., Wu, S., Orsi, C., Collins, S. R., Chandran, S., Haw, R., Rilstone, J. J., Gandi, K., Thompson, N. J., Musso, G., St, O.nge, P., Ghanny, S., Lam, M. H., Butland, G., Altaf-Ul, A. M., Kanaya, S., Shilatifard, A., O'Shea E, Weissman, J. S., Ingles, C. J., Hughes, T. R., Parkinson, J., Gerstein, M., Wodak, S. J., Emili, A., Greenblatt, J. F. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.

    Article  PubMed  CAS  Google Scholar 

  6. Ong, S. E., and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative, Nat. Chem. Biol . 1, 252–262.

    Article  PubMed  CAS  Google Scholar 

  7. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386.

    Article  PubMed  CAS  Google Scholar 

  8. Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J., and Mann, M. (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318.

    Article  PubMed  CAS  Google Scholar 

  9. Dengjel, J., Akimov, V., Olsen, J. V., Bunkenborg, J., Mann, M., Blagoev, B., and Andersen, J. S. (2007) Quantitative proteomic assessment of very early cellular signaling events. Nat. Biotechnol. 25, 566–568.

    Article  PubMed  CAS  Google Scholar 

  10. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., and Mann, M. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477.

    Article  PubMed  CAS  Google Scholar 

  11. Kruger, M., Kratchmarova, I., Blagoev, B., Tseng, Y. H., Kahn, C. R., and Mann, M. (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl. Acad. Sci. USA 105, 2451–2456.

    Article  PubMed  Google Scholar 

  12. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  13. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  14. Ranish, J. A., Hahn, S., Lu, Y., Yi, E. C., Li, X. J., Eng, J., and Aebersold, R. (2004) Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat. Genet. 36, 707–713.

    Article  PubMed  CAS  Google Scholar 

  15. Bai, Y., Markham, K., Chen, F., Weerasekera, R., Watts, J., Horne, P., Wakutani, Y., Bagshaw, R., Mathews, P. M., Fraser, P. E., Westaway, D., St George-Hyslop, P., Schmitt-Ulms, G. (2008) The in vivo brain interactome of the amyloid precursor protein. Mol. Cell Proteomics 7, 15–34.

    PubMed  CAS  Google Scholar 

  16. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906.

    Article  PubMed  CAS  Google Scholar 

  17. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  18. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648.

    Article  PubMed  CAS  Google Scholar 

  19. Blagoev, B., and Mann, M. (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40, 243–250.

    Article  PubMed  CAS  Google Scholar 

  20. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860.

    Article  PubMed  CAS  Google Scholar 

  21. Pandey, A., Podtelejnikov, A. V., Blagoev, B., Bustelo, X. R., Mann, M., and Lodish, H. F. (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97, 179–184.

    Article  PubMed  CAS  Google Scholar 

  22. Pandey, A., Blagoev, B., Kratchmarova, I., Fernandez, M., Nielsen, M., Kristiansen, T. Z., Ohara, O., Podtelejnikov, A. V., Roche, S., Lodish, H. F., Mann, M. (2002) Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene 21, 8029–8036.

    Article  PubMed  CAS  Google Scholar 

  23. Pandey, A., Fernandez, M. M., Steen, H., Blagoev, B., Nielsen, M. M., Roche, S., Mann, M., Lodish, H. F. (2000) Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J. Biol. Chem. 275, 38633–38639.

    Article  PubMed  CAS  Google Scholar 

  24. Kristiansen, T. Z., Nielsen, M. M., Blagoev, B., Pandey, A., and Mann, M. (2004) Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype. DNA. Res. 11, 285–292.

    PubMed  CAS  Google Scholar 

  25. Mousson, F., Kolkman, A., Pijnappel, W. W., Timmers, H. T., and Heck, A. J. (2008) Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol. Cell Proteomics 7, 845–852.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, X., and Huang, L. (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell Proteomics 7, 46–57.

    PubMed  Google Scholar 

  27. Mertins, P., Eberl, H. C., Renkawitz, J., Olsen, J. V., Tremblay, M. L., Mann, M., Ullrich, A., and Daub, H. (2008) Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol. Cell Proteomics 7, 1763–1777.

    Article  PubMed  CAS  Google Scholar 

  28. Selbach, M., and Mann, M. (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat. Methods 3, 981–983.

    Article  PubMed  CAS  Google Scholar 

  29. Foster, L. J., Rudich, A., Talior, I., Patel, N., Huang, X., Furtado, L. M., Bilan, P. J., Mann, M., Klip, A. (2006) Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 5, 64–75.

    Article  PubMed  CAS  Google Scholar 

  30. Trinkle-Mulcahy, L., Andersen, J., Lam, Y. W., Moorhead, G., Mann, M., and Lamond, A. I. (2006) Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J. Cell Biol. 172, 679–692.

    Article  PubMed  CAS  Google Scholar 

  31. Dobreva, I., Fielding, A., Foster, L. J., and Dedhar, S. (2008) Mapping the integrin-linked kinase interactome using SILAC. J. Proteome Res. 7, 1740–1749.

    Article  PubMed  CAS  Google Scholar 

  32. Guerrero, C., Tagwerker, C., Kaiser, P., and Huang, L. (2006) An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol. Cell Proteomics 5, 366–378.

    PubMed  CAS  Google Scholar 

  33. Jin, J., Li, G. J., Davis, J., Zhu, D., Wang, Y., Pan, C., and Zhang, J. (2007) Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol. Cell Proteomics 6, 845–859.

    Article  PubMed  CAS  Google Scholar 

  34. Hinsby, A. M., Olsen, J. V., and Mann, M. (2004) Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J. Biol. Chem. 279, 46438–46447.

    Article  PubMed  CAS  Google Scholar 

  35. Schulze, W. X., and Mann, M. (2004) A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 279, 10756–10764.

    Article  PubMed  CAS  Google Scholar 

  36. Hanke, S., and Mann, M. (2008) The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol. Cell Proteomics 8, 519–534.

    Google Scholar 

  37. Schulze, W. X., Deng, L., and Mann, M. (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005 0008.

    Article  PubMed  Google Scholar 

  38. Vermeulen, M., Mulder, K. W., Denissov, S., Pijnappel, W. W., van Schaik, F. M., Varier, R. A., Baltissen, M. P., Stunnenberg, H. G., Mann, M., Timmers, H. T. (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69.

    Article  PubMed  CAS  Google Scholar 

  39. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., and Cantley, L. C. (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186.

    Article  PubMed  CAS  Google Scholar 

  40. Mittler, G., Butter, F., and Mann, M. (2009) A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res. 19, 284–293.

    Article  PubMed  CAS  Google Scholar 

  41. Dengjel, J., Kratchmarova, I., and Blagoev, B. (2009) Receptor tyrosine kinase signaling: a view from quantitative proteomics. Mol. Biosyst. 5, 1112–1121.

    Google Scholar 

Download references

Acknowledgments

We thank all CEBI group members for helpful discussions and support. The research leading to these results has received funding from the European Commission’s 7th Framework Programme (grant agreement HEALTH-F4-2008-201648/PROSPECTS), the Danish Natural Science Research Council, the Danish Medical Research Council, and the Lundbeck Foundation. JD was supported by the European Molecular Biology Organization and by the Excellence Initiative of the German Federal and State Governments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dengjel, J., Kratchmarova, I., Blagoev, B. (2010). Mapping Protein–Protein Interactions by Quantitative Proteomics. In: Cutillas, P., Timms, J. (eds) LC-MS/MS in Proteomics. Methods in Molecular Biology, vol 658. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-780-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-780-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-779-2

  • Online ISBN: 978-1-60761-780-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics