Skip to main content

Proteome-Wide Quantitation by SILAC

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 658))

Abstract

Ongoing improvements in instrumentation, fractionation techniques, and enrichment procedures have dramatically increased the coverage of the proteome achievable via LC-MS/MS-based methodologies, opening the call for approaches to quantitatively assess differences at a proteome-wide scale. Stable isotope labeling by amino acids in cell culture (SILAC) has emerged as a powerful and versatile approach for proteome-wide quantitation by mass spectrometry. SILAC utilizes the cells’ own metabolism to incorporate isotopically labeled amino acids into its proteome which can be mixed with the proteome of unlabeled cells and differences in protein expression can easily be read out by comparing the abundance of the labeled versus unlabeled proteins. SILAC has been applied to numerous different cell lines and the technique has been adapted for a wide range of experimental procedures. In this chapter we provide detailed procedure for performing SILAC-based experiment for proteome-wide quantitation, including a protocol for optimizing SILAC labeling. We also provide an update on the most recent developments of this technique.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cox, J., and Mann, M. (2007) Is proteomics the new genomics? Cell 130, 395–398.

    Article  PubMed  CAS  Google Scholar 

  2. de Godoy, L. M., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Frohlich, F., Walther, T. C., and Mann, M. (2008) Comprehensive mass-spectrometry-based proteome quantitation of haploid versus diploid yeast. Nature 455, 1251–1254.

    Article  PubMed  Google Scholar 

  3. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386.

    Article  PubMed  CAS  Google Scholar 

  4. Graumann, J., Hubner, N. C., Kim, J. B., Ko, K., Moser, M., Kumar, C., Cox, J., Scholer, H., and Mann, M. (2008) Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol. Cell. Proteomics 7, 672–683.

    PubMed  CAS  Google Scholar 

  5. Prokhorova, T. A., Rigbolt, K. T., Johansen, P. T., Henningsen, J., Kratchmarova, I., Kassem, M., and Blagoev, B. (2009) SILAC-labeling and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol. Cell. Proteomics 8, 959–970.

    Google Scholar 

  6. Bendall, S. C., Hughes, C., Stewart, M. H., Doble, B., Bhatia, M., and Lajoie, G. A. (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol. Cell. Proteomics 7, 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  7. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., and Mann, M. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477.

    Article  PubMed  CAS  Google Scholar 

  8. Van Hoof, D., Pinkse, M. W., Oostwaard, D. W., Mummery, C. L., Heck, A. J., and Krijgsveld, J. (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat. Methods 4, 677–678.

    Article  PubMed  Google Scholar 

  9. Mann, M. (2006) Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell. Biol. 7, 952–958.

    Article  PubMed  CAS  Google Scholar 

  10. Blagoev, B., and Mann, M. (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40, 243–250.

    Article  PubMed  CAS  Google Scholar 

  11. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  12. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648.

    Article  PubMed  CAS  Google Scholar 

  13. Dengjel, J., Akimov, V., Olsen, J. V., Bunkenborg, J., Mann, M., Blagoev, B., and Andersen, J. S. (2007) Quantitative proteomic assessment of very early cellular signaling events. Nat. Biotechnol 25, 566–568.

    Article  PubMed  CAS  Google Scholar 

  14. Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J., and Mann, M. (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318.

    Article  PubMed  CAS  Google Scholar 

  15. Vermeulen, M., Mulder, K. W., Denissov, S., Pijnappel, W. W., van Schaik, F. M., Varier, R. A., Baltissen, M. P., Stunnenberg, H. G., Mann, M., and Timmers, H. T. (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69.

    Article  PubMed  CAS  Google Scholar 

  16. Ishihama, Y., Sato, T., Tabata, T., Miyamoto, N., Sagane, K., Nagasu, T., and Oda, Y. (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol. 23, 617–621.

    Article  PubMed  CAS  Google Scholar 

  17. Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R., and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364.

    Article  PubMed  Google Scholar 

  18. Mueller, L. N., Brusniak, M. Y., Mani, D. R., and Aebersold, R (2008). An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res. 7, 51–61.

    Article  PubMed  CAS  Google Scholar 

  19. Ong, S. E., Foster, L. J., and Mann, M. (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124–130.

    Article  PubMed  CAS  Google Scholar 

  20. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031.

    Article  PubMed  CAS  Google Scholar 

  21. Nesvizhskii, A. I., and Aebersold, R. (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell Proteomics 4, 1419–1440.

    Article  PubMed  CAS  Google Scholar 

  22. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantitation. Nat. Biotechnol. 26, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  23. Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181.

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen, M. L., Vermeulen, M., Bonaldi, T., Cox, J., Moroder, L., and Mann, M. (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat. Methods 5, 459–460.

    Article  PubMed  CAS  Google Scholar 

  25. Andersen, J. S., Lam, Y. W., Leung, A. K., Ong, S. E., Lyon, C. E., Lamond, A. I., and Mann, M. (2005) Nucleolar proteome dynamics. Nature 433, 77–83.

    Article  PubMed  CAS  Google Scholar 

  26. Kruger, M., Kratchmarova, I., Blagoev, B., Tseng, Y. H., Kahn, C. R., and Mann, M. (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl. Acad. Sci. USA 105, 2451–2456.

    Article  PubMed  Google Scholar 

  27. Molina, H., Yang, Y., Ruch, T., Kim, J. W., Mortensen, P., Otto, T., Nalli, A., Tang, Q. Q., Lane, M. D., Chaerkady, R., and Pandey, A. (2009) Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J. Proteome Re s. 8, 48–58.

    Google Scholar 

  28. Hubner, N. C., Ren, S., and Mann, M. (2008) Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. Proteomics 8, 4862–4872.

    Article  PubMed  CAS  Google Scholar 

  29. Park, S. K., Venable, J. D., Xu, T., and Yates, J. R., 3rd. (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat. Methods 5, 319–322.

    PubMed  CAS  Google Scholar 

  30. Dobreva, I., Fielding, A., Foster, L. J., and Dedhar, S. (2008) Mapping the integrin-linked kinase interactome using SILAC. J. Proteome Res. 7, 1740–1749.

    Article  PubMed  CAS  Google Scholar 

  31. Kristensen, A. R., Schandorff, S., Hoyer-Hansen, M., Nielsen, M. O., Jaattela, M., Dengjel, J., and Andersen, J. S. (2008) Ordered organelle degradation during starvation-induced autophagy. Mol. Cell. Proteomics 7, 2419–2428.

    Article  PubMed  CAS  Google Scholar 

  32. Dengjel, J., Kratchmarova, I., and Blagoev, B. (2009) Receptor tyrosine kinase signaling: a view from quantitative proteomics. Mol. Biosyst. 5, 1112–1121.

    Google Scholar 

  33. Mortensen, P., Gouw, J. W., Olsen, J. V., Ong, S. E., Rigbolt, K. T., Bunkenborg, J., Cox, J., Foster, L. J., Heck, A. J., Blagoev, B., Andersen, J. S., and Mann, M. (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J. Proteome Res. 9, 393–403.

    Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Center for Experimental BioInformatics (CEBI) for useful discussions, especially Dr. Irina Kratchmarova for the critical reading of the chapter. The research leading to these results has received funding from the European Commission’s 7th Framework Programme (grant agreement HEALTH-F4-2008-201648/PROSPECTS), the Danish Natural Science Research Council and the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rigbolt, K.T., Blagoev, B. (2010). Proteome-Wide Quantitation by SILAC. In: Cutillas, P., Timms, J. (eds) LC-MS/MS in Proteomics. Methods in Molecular Biology, vol 658. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-780-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-780-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-779-2

  • Online ISBN: 978-1-60761-780-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics