Skip to main content

Virus-Induced Gene Silencing as a Reverse Genetics Tool to Study Gene Function

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 655))

Abstract

Reverse genetics has proven to be a powerful approach to elucidating gene function in plants, particularly in Arabidopsis. Virus-induced gene silencing (VIGS) is one such method and achieves reductions in target gene expression as the vector moves into newly formed tissues of inoculated plants. VIGS is especially useful for plants that are recalcitrant for transformation and for genes that cause embryo lethality. VIGS provides rapid, transient knockdowns as a complement to other reverse genetics tools and can be used to screen sequences for RNAi prior to stable transformation. High-throughput, forward genetic screening is also possible by cloning libraries of short gene fragments directly into a VIGS plasmid DNA vector, inoculating, and then looking for a phenotype of interest. VIGS is especially useful for studying genes in crop species, which currently have few genetic resources. VIGS facilitates a rapid comparison of knockdown phenotypes of the same gene in different breeding lines or mutant backgrounds, as the same vector is easily inoculated into different plants. In this chapter, we briefly discuss how to choose or construct a VIGS vector and then how to design and carry out effective experiments using VIGS.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baulcombe, D. (2004) RNA silencing in plants. Nature 431, 356–363.

    Article  PubMed  CAS  Google Scholar 

  2. Vazquez, F., Vaucheret, H., Rajagopalan, R., et al. (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16, 69–79.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman, E. J. and Carrington, J. C. (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8, 884–896.

    Article  PubMed  CAS  Google Scholar 

  4. Vaucheret, H. (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20, 759–771.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson, D. (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55, 495–519.

    Article  PubMed  CAS  Google Scholar 

  6. Park, J. A., Ahn, J. W., Kim Y. K., et al. (2005) Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J 42, 153–163.

    Article  PubMed  CAS  Google Scholar 

  7. Jin, H., Axtell, M. J., Dahlbeck, D., et al. (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3, 291–297.

    Article  PubMed  CAS  Google Scholar 

  8. Peele, C., Jordan, C. V., Muangsan, N., et al. (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27, 357–366.

    Article  PubMed  CAS  Google Scholar 

  9. Muangsan, N., Beclin, C., Vaucheret, H., and Robertson, D. (2004) Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J 38, 1004–1014.

    Article  PubMed  CAS  Google Scholar 

  10. Senthil-Kumar, M., Rame Gowda, H. V., Hema, R., Mysore, K. S., Udayakumar, M. (2008) Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. J Plant Physiol 165, 1404–1421.

    Article  PubMed  CAS  Google Scholar 

  11. Tuttle, J. R., Idris, A. M., Brown, J. K., Haigler, C. H., and Robertson, D. (2008) Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol 148, 41–50.

    Article  PubMed  CAS  Google Scholar 

  12. Jordan, C. V., Shen, W., Hanley-Bowdoin, L. K., and Robertson, D. N. (2007) Geminivirus-induced gene silencing of the tobacco retinoblastoma-related gene results in cell death and altered development. Plant Mol Biol 65, 163–175.

    Article  PubMed  CAS  Google Scholar 

  13. Turnage, M. A., Muangsan, N., Peele, C. G., and Robertson, D. (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30, 107–114.

    Article  PubMed  CAS  Google Scholar 

  14. Kjemtrup, S., Sampson, K. S., Peele, C. G., et al. (1998) Gene silencing from plant DNA carried by a Geminivirus. Plant J 14, 91–100.

    Article  PubMed  CAS  Google Scholar 

  15. Carrillo-Tripp, J., Shimada-Beltran, H., and Rivera-Bustamante, R. (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9, 209–215.

    Article  PubMed  CAS  Google Scholar 

  16. Holzberg, S., Brosio, P., Gross, C., and Pogue, G. P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30, 315–327.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, C. and Ghabrial, S. A. (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344, 401–411.

    Article  PubMed  CAS  Google Scholar 

  18. Ratcliff, F., Martin-Hernandez, A. M., and Baulcombe, D. C. (2001) Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25, 237–245.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, Y., Schiff, M., Dinesh-Kumar, S. P. (2002) Virus-induced gene silencing in tomato. Plant J 31, 777–786.

    Article  PubMed  CAS  Google Scholar 

  20. Cai, X., Wang, C., Xu, Y., Xu, Q., Zheng, Z., and Zhou, X. (2007) Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Res. 125, 169–175.

    Article  PubMed  CAS  Google Scholar 

  21. Fu, D. Q., Zhu, B. Z., Zhu, H. L., et al. (2006) Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol Cells 21, 153–160.

    Article  PubMed  CAS  Google Scholar 

  22. Akbergenov, R., Si-Ammour, A., Blevins, T., et al. (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34, 462–471.

    Article  PubMed  CAS  Google Scholar 

  23. Raja, P., Sanville, B. C., Buchmann, R. C., and Bisaro, D. M. (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82, 8997–9007.

    Article  PubMed  CAS  Google Scholar 

  24. Hilson, P., Allemeersch, J., Altmann, T., et al. (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14, 2176–2189.

    Article  PubMed  CAS  Google Scholar 

  25. Park, J. and Labaer, J. (2006) Recombinational cloning. Curr Protoc Mol Biol Chapter 3:Unit 3.20.

  26. Finer. J., Vain, P., Jones, M., and McMullen, M. (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11, 323–328.

    Article  CAS  Google Scholar 

  27. Rojas, M. R., Hagen, C., Lucas, W. J., and Gilbertson, R. L. (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43, 361–394.

    Article  PubMed  CAS  Google Scholar 

  28. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  29. Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C., and Van Wuytswinkel, O. (2008) Towards a Systematic Validation of References in Real-Time RT-PCR. Plant Cell 20, 1734–1735.

    Article  PubMed  CAS  Google Scholar 

  30. Udvardi, M. K., Czechowski, T., and Scheible, W. (2008) Eleven Golden Rules of Quantitative RT-PCR. Plant Cell 20, 1736–1737.

    Article  PubMed  CAS  Google Scholar 

  31. Xin, Z., Velten, J. P., Oliver, M. J., and Burke, J. J. (2003) High-throughput DNA extraction method suitable for PCR. BioTechniques 34, 820–826.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Savithramma Dinesh-Kumar for providing the Tobacco Rattle Virus VIGS vectors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bernacki, S., Karimi, M., Hilson, P., Robertson, N. (2010). Virus-Induced Gene Silencing as a Reverse Genetics Tool to Study Gene Function. In: Hennig, L., Köhler, C. (eds) Plant Developmental Biology. Methods in Molecular Biology, vol 655. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-765-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-765-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-764-8

  • Online ISBN: 978-1-60761-765-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics