Skip to main content

What Can We Learn from a Small Regulatory Membrane Protein?

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 654))

Abstract

This chapter reviews the molecular biology, biochemical, and NMR methods that we used to study the structural dynamics, membrane topology, and interaction of phospholamban (PLN), a small regulatory membrane protein involved in the regulation of the sarcoplasmic reticulum Ca-ATPase (SERCA). In particular, we show the progression of our research from the initial hypotheses toward understanding the molecular mechanisms of SERCA’s regulation, including the effects of PLN oligomerization and posttranslational phosphorylation. Finally, we show how the knowledge of the molecular mechanism of the structural dynamics and topology of free and bound proteins can lead to the rational design of PLN analogs for possible use in gene therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mac Lennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev 4:566–577

    Article  CAS  Google Scholar 

  2. Kranias EG, Bers DM (2007) Calcium and cardiomyopathies. Subcell Biochem 45:523–537

    Article  PubMed  CAS  Google Scholar 

  3. Hoshijima M, Knoll R, Pashmforoush M, Chien KR (2006) Reversal of calcium cycling defects in advanced heart failure toward molecular therapy. J Am Coll Cardiol 48:A15–A23

    Article  PubMed  CAS  Google Scholar 

  4. Inesi G, Lewis D, Ma H, Prasad A, Toyoshima C (2006) Concerted conformational effects of Ca2+ and ATP are required for activation of sequential reactions in the Ca2+ ATPase (SERCA) catalytic cycle. Biochemistry 45:13769–13778

    Article  PubMed  CAS  Google Scholar 

  5. Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292

    Article  PubMed  CAS  Google Scholar 

  6. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  7. Inesi G, Prasad AM, Pilankatta R (2008) The Ca2+ ATPase of cardiac sarcoplasmic reticulum: physiological role and relevance to diseases. Biochem Biophys Res Commun 369:182–187

    Article  PubMed  CAS  Google Scholar 

  8. Negash S, Chen LT, Bigelow DJ, Squier TC (1996) Phosphorylation of phospholamban by cAMP-dependent protein kinase enhances interactions between Ca-ATPase polypeptide chains in cardiac sarcoplasmic reticulum membranes. Biochemistry 35:11247–11259

    Article  PubMed  CAS  Google Scholar 

  9. Negash S, Sun H, Yao Q, Goh SY, Bigelow DJ, Squier TC (1998) Cytosolic domain of phospholamban remains associated with the Ca-ATPase following phosphorylation by cAMP-dependent protein kinase. Ann N Y Acad Sci 853:288–291

    Article  PubMed  CAS  Google Scholar 

  10. Negash S, Yao Q, Sun H, Li J, Bigelow DJ, Squier TC (2000) Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase. Biochem J 351:195–205

    Article  PubMed  CAS  Google Scholar 

  11. Mueller B, Karim CB, Negrashov IV, Kutchai H, Thomas DD (2004) Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer. Biochemistry 43:8754–8765

    Article  PubMed  CAS  Google Scholar 

  12. Kirby TL, Karim CB, Thomas DD (2004) Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Biochemistry 43:5842–5852

    Article  PubMed  CAS  Google Scholar 

  13. Karim CB, Zhang Z, Howard EC, Torgersen KD, Thomas DD (2006) Phosphorylation-dependent conformational switch in spin-labeled phospholamban bound to SERCA. J Mol Biol 358:1032–1040

    Article  PubMed  CAS  Google Scholar 

  14. Thomas DD, Reddy LG, Karim CB et al (1998) Direct spectroscopic detection of molecular dynamics and interactions of the calcium pump and phospholamban. Ann N Y Acad Sci 853:186–194

    Article  PubMed  CAS  Google Scholar 

  15. Stokes DL, Green NM (1990) Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys J 57:1–14

    Article  PubMed  CAS  Google Scholar 

  16. Stokes DL, Pomfret AJ, Rice WJ, Glaves JP, Young HS (2006) Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals. Biophys J 90:4213–4223

    Article  PubMed  CAS  Google Scholar 

  17. Zamoon J, Nitu F, Karim C, Thomas DD, Veglia G (2005) Mapping the interaction surface of a membrane protein: unveiling the conformational switch of phospholamban in calcium pump regulation. Proc Natl Acad Sci U S A 102:4747–4752

    Article  PubMed  CAS  Google Scholar 

  18. Traaseth NJ, Thomas DD, Veglia G (2006) Effects of Ser16 phosphorylation on the allosteric transitions of phospholamban/Ca(2+)-ATPase complex. J Mol Biol 358:1041–1050

    Article  PubMed  CAS  Google Scholar 

  19. Traaseth NJ, Ha KN, Verardi R et al (2008) Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase. Biochemistry 47:3–13

    Article  PubMed  CAS  Google Scholar 

  20. Metcalfe EE, Traaseth NJ, Veglia G (2005) Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban. Biochemistry 44:4386–4396

    Article  PubMed  CAS  Google Scholar 

  21. Buck B, Zamoon J, Kirby TL et al (2003) Overexpression, purification, and characterization of recombinant Ca-ATPase regulators for high-resolution solution and solid-state NMR studies. Protein Expr Purif 30:253–261

    Article  PubMed  CAS  Google Scholar 

  22. Douglas JL, Trieber CA, Afara M, Young HS (2005) Rapid, high-yield expression and purification of Ca2+-ATPase regulatory proteins for high-resolution structural studies. Protein Expr Purif 40:118–125

    Article  PubMed  CAS  Google Scholar 

  23. Madden TD, Chapman D, Quinn PJ (1979) Cholesterol modulates activity of calcium-dependent ATPase of the sarcoplasmic reticulum. Nature 279:538–541

    Article  PubMed  CAS  Google Scholar 

  24. Fabiato A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol 75:463–505

    CAS  Google Scholar 

  25. Kay LE, Keifer E, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  CAS  Google Scholar 

  26. Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson 109:270–272

    Article  Google Scholar 

  27. Ramamoorthy A, Wei Y, Lee D (2004) PISEMA solid-state NMR spectroscopy. Annu Rep NMR Spectrosc 52:1–52

    Article  Google Scholar 

  28. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  CAS  Google Scholar 

  29. Vinogradov E, Madhu PK, Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment. Chem Phys Lett 314:443–450

    Article  CAS  Google Scholar 

  30. Gor’kov PL, Chekmenev EY, Li C et al (2006) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson

    Google Scholar 

  31. Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606

    Article  PubMed  CAS  Google Scholar 

  32. Gao FP, Cross TA (2005) Recent developments in membrane–protein structural genomics. Genome Biol 6:244

    Article  PubMed  Google Scholar 

  33. Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 106:10165–10170

    Article  PubMed  CAS  Google Scholar 

  34. Shi L, Traaseth NJ, Verardi R, Cembran A, Gao J, Veglia G (2009) A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. J Biomol NMR 44:195–205

    Article  PubMed  CAS  Google Scholar 

  35. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  PubMed  CAS  Google Scholar 

  36. Ha KN, Traaseth NJ, Verardi R et al (2007) Controlling the inhibition of the sarcoplasmic Ca2+-ATPase by tuning phospholamban structural dynamics. J Biol Chem 282:37205–37214

    Article  PubMed  CAS  Google Scholar 

  37. Traaseth NJ, Verardi R, Torgersen KD, Karim CB, Thomas DD, Veglia G (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci U S A 104:14676–14681

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants to GV from the National Institutes of Health (GM64742, HL80081, GM072701) and NJT (AHA 0515491Z). PISEMA spectra were acquired at the NHMFL, Tallahassee, FL (DMR-0084173). NMR instrumentation at the University of Minnesota High Field NMR Center was funded by the National Science Foundation (BIR-961477) and the University of Minnesota Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Veglia, G., Ha, K.N., Shi, L., Verardi, R., Traaseth, N.J. (2010). What Can We Learn from a Small Regulatory Membrane Protein?. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics