Skip to main content

Digital Candidate Gene Approach (DigiCGA) for Identification of Cancer Genes

  • Protocol
  • First Online:
Cancer Susceptibility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 653))

Abstract

The candidate gene approach is one of the most commonly used methods for identifying genes underlying disease traits. Advances in genomics have greatly contributed to the development of this approach in the past decade. More recently, with the explosion of genomic resources accessible via the public Web, digital candidate gene approach (DigiCGA) has emerged as a new development in this field. DigiCGA, an approach still in its infancy, has already achieved some primary success in cancer gene discovery. However, a detailed discussion concerning the applications of DigiCGA in cancer gene identification has not been addressed. This chapter will focus on discussing DigiCGA in a generalized sense and its applications to the identification of cancer genes, including the cancer gene resources, application status, platform and tools, challenges, and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magrath, I., and Litvak, J. (1993) Cancer in developing countries: opportunity and challenge. J. Natl. Cancer Inst. 85, 862–874

    Article  PubMed  CAS  Google Scholar 

  2. Vogelstein, B., and Kinzler, K.W. (2004) Cancer genes and the pathways they control. Nat. Med. 10, 789–799

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan, D., and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57–70

    Article  PubMed  CAS  Google Scholar 

  4. Zhu, M.J., and Zhao, S.H. (2007) Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3, 420–427

    Article  PubMed  CAS  Google Scholar 

  5. Tabor, H.K., Risch, N.J., and Myers, R.M. (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat. Rev. Genet. 3, 391–397

    Article  PubMed  CAS  Google Scholar 

  6. Kwon, J.M., and Goate, A.M. (2000) The candidate gene approach. Alcohol Res. Health 24, 164–168

    PubMed  CAS  Google Scholar 

  7. Daly, A.K. (2003) Candidate gene case-control studies. Pharmacogenomics 4, 127–139

    Article  PubMed  CAS  Google Scholar 

  8. Yochum, G.S., Cleland, R., and Goodman, R.H. (2008) A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol. Cell Biol. 28, 7368–7379

    Article  PubMed  CAS  Google Scholar 

  9. Flanagan, J.M., Funes, J.M., Henderson, S., Wild, L., Carey, N., and Boshoff, C. (2009) Genomics screen in transformed stem cells reveals RNASEH2A, PPAP2C, and ADARB1 as putative anticancer drug targets. Mol. Cancer Ther. 8, 249–260

    Article  PubMed  CAS  Google Scholar 

  10. Heng, H.H. (2007) Cancer genome sequencing: the challenges ahead. Bioessays 29, 783–794

    Article  PubMed  Google Scholar 

  11. Esteller, M. (2006) The necessity of a human epigenome project. Carcinogenesis 27, 1121–1125

    Article  PubMed  CAS  Google Scholar 

  12. Varki, A., Wills, C., Perlmutter, D., Woodruff, D., Gage, F., Moore, J., et al. (1998) Great ape phenome project? Science 282, 239–240

    Article  PubMed  CAS  Google Scholar 

  13. Freimer, N., and Sabatti, C. (2003) The human phenome project. Nat. Genet. 34, 15–21

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida, T., and Yoshimura, K. (2003) Outline of disease gene hunting approaches in the Millennium Genome Project of Japan. Proc. Jpn. Acad. 79, 34–50

    Google Scholar 

  15. Schubert, K., von Bonnsdorf, H., Burke, M., Ahlert, I., Braun, S., Berner, R., et al. (2006) A comprehensive candidate gene study on bronchial asthma and juvenile idiopathic arthritis. Dis. Markers 22, 127–132

    PubMed  CAS  Google Scholar 

  16. Miyata, T. (2008) Large-scale candidate gene approach to identifying hypertension-susceptible genes. Hypertens Res. 31, 173–174

    Article  PubMed  Google Scholar 

  17. Sato, Y., Suganami, H., Hamada, C., Yoshimura, I., Yoshida, T., and Yoshimura, K. (2004) Designing a multistage, SNP-based, genome screen for common diseases. J. Hum. Genet. 49, 669–676

    Article  PubMed  CAS  Google Scholar 

  18. Thomas, D., Xie, R., and Gebregziabher, M. (2004) Two-stage sampling designs for gene association studies. Genet. Epidemiol. 27, 401–414

    Article  PubMed  Google Scholar 

  19. Beckly, J.B., Hancock, L., Geremia, A., Cummings, J.R., Morris, A., Cooney, R., et al. (2008) Two-stage candidate gene study of chromosome 3p demonstrates an association between nonsynonymous variants in the MST1R gene and Crohn’s disease. Inflamm. Bowel Dis. 14, 500–507

    Article  PubMed  Google Scholar 

  20. Li, J. (2008) Prioritize and select SNPs for association studies with multi-stage designs. J. Comput. Biol. 15, 241–257

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, K., Calabrese, P., Nordborg, M., and Sun, F. (2002) Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet. 71, 1386–1394

    Article  PubMed  CAS  Google Scholar 

  22. Sironen, A., Thomsen, B., Andersson, M., Ahola, V., and Vilkki, J. (2006) An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proc. Natl. Acad. Sci. USA 103, 5006–5011

    Article  PubMed  CAS  Google Scholar 

  23. Schadt, E.E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D., et al. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717

    Article  PubMed  CAS  Google Scholar 

  24. Stylianou, I.M., Affourtit, J.P., Shockley, K.R., Wilpan, R.Y., Abdi, F.A., Bhardwaj, S., et al. (2008) Applying gene expression, proteomics and single-nucleotide polymorphism analysis for complex trait gene identification. Genetics 178, 1795–1805

    Article  PubMed  CAS  Google Scholar 

  25. Tranchevent, L.C., Barriot, R., Yu, S., Van Vooren, S., Van Loo, P., Coessens, B., et al. (2008) Endeavour update: a web resource for gene prioritization in multiple species. Nucleic Acids Res. 36, W377–W384

    Article  PubMed  CAS  Google Scholar 

  26. Hristovski, D., Peterlin, B., Mitchell, J.A., and Humphrey, S.M. (2005) Using literature-based discovery to identify disease candidate genes. Int. J. Med. Inform. 74, 289–298

    Article  PubMed  Google Scholar 

  27. Sugaya, N., Ikeda, K., Tashiro, T., Takeda, S., Otomo, J., Ishida, Y., et al. (2007) An integrative in silico approach for discovering candidates for drug-targetable protein–protein interactions in interactome data. BMC Pharmacol. 7, 10

    Article  PubMed  Google Scholar 

  28. Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., and Wijmenga, C. (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78, 1011–1025

    Article  PubMed  CAS  Google Scholar 

  29. Rossi, S., Masotti, D., Nardini, C., Bonora, E., Romeo, G., Macii, E., et al. (2006) TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res. 34, W285–W292

    Article  PubMed  CAS  Google Scholar 

  30. George, R.A., Liu, J.Y., Feng, L.L., Bryson-Richardson, R.J., Fatkin, D., and Wouters, M.A. (2006) Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res. 34, e130

    Article  PubMed  Google Scholar 

  31. Yonan, A.L., Palmer, A.A., Smith, K.C., Feldman, I., Lee, H.K., Yonan, J.M., et al. (2003) Bioinformatic analysis of autism positional candidate genes using biological databases and computational gene network prediction. Genes Brain Behav. 2, 303–320

    Article  PubMed  CAS  Google Scholar 

  32. Harhay, G.P., and Keele, J.W. (2003) Positional candidate gene selection from livestock EST databases using gene ontology. Bioinformatics 19, 249–255

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Iratxeta, C., Bork, P., and Andrade, M.A. (2002) Association of genes to genetically inherited diseases using data mining. Nat. Genet. 31, 316–319

    PubMed  CAS  Google Scholar 

  34. Pellegrini-Calace, M., and Tramontano, A. (2006) Identification of a novel putative mitogen-activated kinase cascade on human chromosome 21 by computational approaches. Bioinformatics 22, 775–778

    Article  PubMed  CAS  Google Scholar 

  35. Freudenberg, J., and Propping, P. (2002) A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 18, S110–S115

    Article  PubMed  Google Scholar 

  36. De Bie, T., Tranchevent, L.C., van Oeffelen, L.M., and Moreau, Y. (2007) Kernel-based data fusion for gene prioritization. Bioinformatics 23, i125–i132

    Article  PubMed  Google Scholar 

  37. Adie, E.A., Adams, R.R., Evans, K.L., Porteous, D.J., and Pickard, B.S. (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6, 55

    Article  PubMed  Google Scholar 

  38. Xu, J., and Li, Y. (2006) Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22, 2800–2805

    Article  PubMed  CAS  Google Scholar 

  39. Tiffin, N., Adie, E., Turner, F., Brunner, H.G., van Driel, M.A., Oti, M., et al. (2006) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 34, 3067–3081

    Article  PubMed  CAS  Google Scholar 

  40. Feng, Z., Davis, D.P., Sásik, R., Patel, H.H., Drummond, J.C., and Patel, P.M. (2007) Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Res. 1177, 103–123

    Article  PubMed  CAS  Google Scholar 

  41. Tiffin, N., Kelso, J.F., Powell, A.R., Pan, H., Bajic, V.B., and Hide, W.A. (2005) Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res. 33, 1544–1552

    Article  PubMed  CAS  Google Scholar 

  42. Arcade, A., Labourdette, A., Falque, M., Mangin, B., Chardon, F., Charcosset, A., et al. (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20, 2324–2326

    Article  PubMed  CAS  Google Scholar 

  43. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., et al. (2006) Gene prioritization through genomic data fusion. Nat. Biotechnol. 24, 537–544

    Article  PubMed  CAS  Google Scholar 

  44. Hernández, P., Solé, X., Valls, J., Moreno, V., Capellá, G., Urruticoechea, A., et al. (2007) Integrative analysis of a cancer somatic mutome. Mol. Cancer 6, 13

    Article  PubMed  Google Scholar 

  45. Chen, Y.P., and Chen, F. (2008) Using bioinformatics techniques for gene identification in drug discovery and development. Curr. Drug Metab. 9, 567–573

    Article  PubMed  CAS  Google Scholar 

  46. Tang, S., Zhang, Z., Tan, S.L., Tang, M.H., Kumar, A.P., Ramadoss, S.K., et al. (2007) KBERG: knowledgebase for estrogen responsive genes. Nucleic Acids Res. 35, D732–D736

    Article  PubMed  CAS  Google Scholar 

  47. Ceresa, M., Masseroli, M., and Campi, A. (2007) A web-enabled database of human gene expression controlled annotations for gene list functional evaluation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 394–397

    PubMed  Google Scholar 

  48. Qiu, P., Wang, L., Kostich, M., Ding, W., Simon, J.S., and Greene, J.R. (2004) Genome wide in silico SNP-tumor association analysis. BMC Cancer 4, 4

    Article  PubMed  Google Scholar 

  49. Rafnar, T., Sulem, P., Stacey, S.N., Geller, F., Gudmundsson, J., Sigurdsson, A., et al. (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221–227

    Article  PubMed  CAS  Google Scholar 

  50. Collier, L.S., and Largaespada, D.A. (2006) Transforming science: cancer gene identification. Curr. Opin. Genet. Dev. 16, 23–29

    Article  PubMed  CAS  Google Scholar 

  51. Aouacheria, A., Navratil, V., López-Pérez, R., Gutiérrez, N.C., Churkin, A., Barash, D., et al. (2007) In silico whole-genome screening for cancer-related single-nucleotide polymorphisms located in human mRNA untranslated regions. BMC Genomics 8, 2

    Article  PubMed  Google Scholar 

  52. Hanauer, D.A., Rhodes, D.R., Sinha-Kumar, C., and Chinnaiyan, A.M. (2007) Bioinformatics approaches in the study of cancer. Curr. Mol. Med. 7, 133–141

    Article  PubMed  CAS  Google Scholar 

  53. Kim, B., Lee, H.J., Choi, H. Y., Shin, Y., Nam, S., Seo, G., et al. (2007) Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data. Cancer Res. 67, 7431–7438

    Article  PubMed  CAS  Google Scholar 

  54. Kirschbaum-Slager, N., Parmigiani, R.B., Camargo, A.A., and de Souza, S.J. (2005) Identification of human exons overexpressed in tumors through the use of genome and expressed sequence data. Physiol. Genomics 21, 423–432

    Article  PubMed  CAS  Google Scholar 

  55. Lal, A., Lash, A.E., Altschul, S.F., Velculescu, V., Zhang, L., McLendon, R.E., et al. (1999) A public database for gene expression in human cancers. Cancer Res. 59, 5403–5407

    PubMed  CAS  Google Scholar 

  56. Mello, B.P., Abrantes, E.F., Torres, C.H., Machado-Lima, A., Fonseca, R.D., Carraro, D.M., et al. (2009) No-match ORESTES explored as tumor markers. Nucleic Acids Res. 37, 2607–2617

    Article  PubMed  CAS  Google Scholar 

  57. Brentani, H., Caballero, O.L., Camargo, A.A., da Silva, A.M., da Silva, W.A. Jr., Dias Neto, E., et al. (2003) The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags. Proc. Natl. Acad. Sci. USA 100, 13418–13423

    Article  PubMed  CAS  Google Scholar 

  58. Aouacheria, A., Navratil, V., Barthelaix, A., Mouchiroud, D., and Gautier, C. (2006) Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues. BMC Genomics 7, 94

    Article  PubMed  Google Scholar 

  59. Scheurle, D., DeYoung, M.P., Binninger, D.M., Page, H., Jahanzeb, M., and Narayanan, R. (2000) Cancer gene discovery using digital differential display. Cancer Res. 60, 4037–4043

    PubMed  CAS  Google Scholar 

  60. DeYoung, M.P., Tress, M., and Narayanan, R. (2003) Identification of Down’s syndrome critical locus gene SIM2-s as a drug therapy target for solid tumors. Proc. Natl. Acad. Sci. USA 100, 4760–4765

    Article  PubMed  CAS  Google Scholar 

  61. Narayanan, R. (2007) Bioinformatics approaches to cancer gene discovery. Methods Mol. Biol. 360, 13–31

    PubMed  CAS  Google Scholar 

  62. Segal, E., Friedman, N., Koller, D., and Regev, A. (2004) A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36, 1090–1098

    Article  PubMed  CAS  Google Scholar 

  63. Wong, D.J., Nuyten, D.S., Regev, A., Lin, M., Adler, A.S., Segal, E., et al. (2008) Revealing targeted therapy for human cancer by gene module maps. Cancer Res. 68, 369–378

    Article  PubMed  CAS  Google Scholar 

  64. Roy, M., Xu, Q., and Lee, C. (2005) Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res. 33, 5026–5033

    Article  PubMed  CAS  Google Scholar 

  65. Wang, Z., Lo, H.S., Yang, H., Gere, S., Hu, Y., Buetow, K.H., et al. (2003) Computational analysis and experimental validation of tumor-associated alternative RNA splicing in human cancer. Cancer Res. 63, 655–657

    PubMed  CAS  Google Scholar 

  66. Xu, Q., and Lee, C. (2003) Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res. 31, 5635–5643

    Article  PubMed  CAS  Google Scholar 

  67. Peeper, D., and Berns, A. (2006) Cross-species oncogenomics in cancer gene identification. Cell 125, 1230–1233

    Article  PubMed  CAS  Google Scholar 

  68. Chen, S.N., and Wen, K.C. (2006) An integrated system for cancer-related genes mining from biomedical literatures. Int. J. Comput. Sci. Appl. 3, 26–39

    CAS  Google Scholar 

  69. Benbow, L., Wang, L., Laverty, M., Liu, S., Qiu, P., Bond, R.W., et al. (2002) A reference database for tumor-related genes co-expressed with interleukin-8 using genome-scale in silico analysis. BMC Genomics 3, 29

    Article  PubMed  Google Scholar 

  70. Riggins, G.J., and Strausberg, R.L. (2001) Genome and genetic resources from the Cancer Genome Anatomy Project. Hum. Mol. Genet. 10, 663–667

    Article  PubMed  CAS  Google Scholar 

  71. MacDonald, J.W., and Ghosh, D. (2006) COPA: cancer outlier profile analysis. Bioinformatics 22, 2950–2951

    Article  PubMed  CAS  Google Scholar 

  72. Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648

    Article  PubMed  CAS  Google Scholar 

  73. Zhang, Y., Luoh, S.M., Hon, L.S., Baertsch, R., Wood, W.I., and Zhang, Z. (2007) GeneHub-GEPIS: digital expression profiling for normal and cancer tissues based on an integrated gene database. Nucleic Acids Res. 35, W152–W158

    Article  PubMed  Google Scholar 

  74. Wen, L., and Feng, J.A. (2004) Repair-FunMap: a functional database of proteins of the DNA repair systems. Bioinformatics 20, 2135–2137

    Article  PubMed  CAS  Google Scholar 

  75. Attur, M.G., Dave, M.N., Tsunoyama, K., Akamatsu, M., Kobori, M., Miki, J., et al. (2002) “A system biology” approach to bioinformatics and functional genomics in complex human diseases: arthritis. Curr. Issues Mol. Biol. 4, 129–146

    PubMed  CAS  Google Scholar 

  76. Mohammad, F., Singh, P., and Sharma, A. (2009) A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs. BMC Syst. Biol. 3, 11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (U0631005, 30901021).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, MJ., Li, X., Zhao, SH. (2010). Digital Candidate Gene Approach (DigiCGA) for Identification of Cancer Genes. In: Webb, M. (eds) Cancer Susceptibility. Methods in Molecular Biology, vol 653. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-759-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-759-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-758-7

  • Online ISBN: 978-1-60761-759-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics