Skip to main content

Zoom-In Array Comparative Genomic Hybridization (aCGH) to Detect Germline Rearrangements in Cancer Susceptibility Genes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 653))

Abstract

Disease predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements, including deletions or duplications that are challenging, to detect and characterize using standard PCR-based mutation screening methods. Such rearrangements range from single exons up to hundreds of kilobases of sequence in size. Array-based comparative genomic hybridization (aCGH) has evolved as a powerful technique to detect copy number alterations on a genome-wide scale. However, the conventional genome-wide approach of aCGH still provides only limited information about copy number status for individual exons. Custom-designed aCGH arrays focused on only a few target regions (zoom-in aCGH) may circumvent this drawback. Benefits of zoom-in aCGH include the possibility to target almost any region in the genome, and an unbiased coverage of exonic and intronic sequence facilitating convenient design of primers for sequence determination of the breakpoints. Furthermore, zoom-in aCGH can be streamlined for a particular application, for example, focusing on breast cancer susceptibility genes, with increased capacity using multiformat design.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nathanson, K.L., Wooster, R., and Weber, B.L. (2001) Breast cancer genetics: what we know and what we need. Nat. Med. 7, 552–556.

    Article  PubMed  CAS  Google Scholar 

  2. Peltomaki, P. (2005) Lynch syndrome genes. Fam. Cancer 4, 227–232.

    Article  PubMed  Google Scholar 

  3. Szabo, C.I., Worley, T., and Monteiro, A.N. (2004) Understanding germ-line mutations in BRCA1. Cancer Biol. Ther. 3, 515–520.

    PubMed  CAS  Google Scholar 

  4. Wang, Y., Friedl, W., Lamberti, C., Jungck, M., Mathiak, M., Pagenstecher, C., et al. (2003) Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int. J. Cancer 103, 636–641.

    Article  PubMed  CAS  Google Scholar 

  5. Mazoyer, S. (2005) Genomic rearrangements in the BRCA1 and BRCA2 genes. Hum. Mutat. 25, 415–422.

    Article  PubMed  CAS  Google Scholar 

  6. Swensen, J., Hoffman, M., Skolnick, M.H., and Neuhausen, S.L. (1997) Identification of a 14 kb deletion involving the promoter region of BRCA1 in a breast cancer family. Hum. Mol. Genet. 6, 1513–1517.

    Article  PubMed  CAS  Google Scholar 

  7. Schouten, J.P., McElgunn, C.J., Waaijer, R., Zwijnenburg, D., Diepvens, F., and Pals, G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucl. Acids Res. 30, e57.

    Article  PubMed  Google Scholar 

  8. Hofmann, W., Gorgens, H., John, A., Horn, D., Huttner, C., Arnold, N., et al. (2003) Screening for large rearrangements of the BRCA1 gene in German breast or ovarian cancer families using semi-quantitative multiplex PCR method. Hum. Mutat. 22, 103–104.

    Article  PubMed  Google Scholar 

  9. Gad, S., Aurias, A., Puget, N., Mairal, A., Schurra, C., Montagna, M., et al. (2001) Color bar coding the BRCA1 gene on combed DNA: a useful strategy for detecting large gene rearrangements. Genes Chromosomes Cancer 31, 75–84.

    Article  PubMed  CAS  Google Scholar 

  10. Casilli, F., Di Rocco, Z.C., Gad, S., Tournier, I., Stoppa-Lyonnet, D., Frebourg, T., et al. (2002) Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments. Hum. Mutat. 20, 218–226.

    Article  PubMed  CAS  Google Scholar 

  11. Albertson, D.G., and Pinkel, D. (2003) Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet. 12 Spec No. 2, R145–R152.

    Article  PubMed  CAS  Google Scholar 

  12. Vissers, L.E., Veltman, J.A., van Kessel, A.G., and Brunner, H.G. (2005) Identification of disease genes by whole genome CGH arrays. Hum. Mol. Genet. 14 Spec No. 2, R215–R223.

    Article  PubMed  CAS  Google Scholar 

  13. Saal, L.H., Gruvberger-Saal, S.K., Persson, C., Lovgren, K., Jumppanen, M., Staaf, J., et al. (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat. Genet. 40, 102–107.

    Article  PubMed  CAS  Google Scholar 

  14. Staaf, J., Torngren, T., Rambech, E., Johansson, U., Persson, C., Sellberg, G., et al. (2008) Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH). Hum. Mutat. 29, 555–564.

    Article  PubMed  CAS  Google Scholar 

  15. Rouleau, E., Lefol, C., Tozlu, S., Andrieu, C., Guy, C., Copigny, F., et al. (2007) High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1. Clin. Genet. 72, 199–207.

    Article  PubMed  CAS  Google Scholar 

  16. Peiffer, D.A., Le, J.M., Steemers, F.J., Chang, W., Jenniges, T., Garcia, F., et al. (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 16, 1136–1148.

    Article  PubMed  CAS  Google Scholar 

  17. Deininger, P.L., and Batzer, M.A. (1999) Alu repeats and human disease. Mol. Genet. Metab. 67, 183–193.

    Article  PubMed  CAS  Google Scholar 

  18. van der Klift, H., Wijnen, J., Wagner, A., Verkuilen, P., Tops, C., Otway, R., et al. (2005) Molecular characterization of the spectrum of genomic deletions in the mismatch repair genes MSH2, MLH1, MSH6, and PMS2 responsible for hereditary nonpolyposis colorectal cancer (HNPCC). Genes Chromosomes Cancer 44, 123–138.

    Article  PubMed  Google Scholar 

  19. Gunnarsson, R., Staaf, J., Jansson, M., Ottesen, A.M., Goransson, H., Liljedahl, U., et al. (2008) Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia-A comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 8, 697–711.

    Article  Google Scholar 

  20. Greshock, J., Feng, B., Nogueira, C., Ivanova, E., Perna, I., Nathanson, K., et al. (2007) A comparison of DNA copy number profiling platforms. Cancer Res. 67, 10173–10180.

    Article  PubMed  CAS  Google Scholar 

  21. Staaf, J., Jonsson, G., Ringner, M., and Vallon-Christersson, J. (2007) Normalization of array-CGH data: influence of copy number imbalances. BMC Genomics 8, 382.

    Article  PubMed  Google Scholar 

  22. Chen, H.I., Hsu, F.H., Jiang, Y., Tsai, M.H., Yang, P.C., Meltzer, P.S., et al. (2008) A probe-density-based analysis method for array CGH data: simulation, normalization and centralization. Bioinformatics 24, 1749–1756.

    Article  PubMed  CAS  Google Scholar 

  23. Charbonnier, F., Olschwang, S., Wang, Q., Boisson, C., Martin, C., Buisine, M.P., et al. (2002) MSH2 in contrast to MLH1 and MSH6 is frequently inactivated by exonic and promoter rearrangements in hereditary nonpolyposis colorectal cancer. Cancer Res. 62, 848–853.

    PubMed  CAS  Google Scholar 

  24. Smith, T.M., Lee, M.K., Szabo, C.I., Jerome, N., McEuen, M., Taylor, M., et al. (1996) Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res. 6, 1029–1049.

    Article  PubMed  CAS  Google Scholar 

  25. Rozen, S., and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Cancer Society, the Swedish Research Council, the Mrs. Berta Kamprad Foundation, the Gunnar Nilsson Cancer Foundation, and the Swedish Foundation for Strategic Research. The authors acknowledge the contribution by Therese Törngren, Department of Oncology, Lund University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Staaf, J., Borg, Å. (2010). Zoom-In Array Comparative Genomic Hybridization (aCGH) to Detect Germline Rearrangements in Cancer Susceptibility Genes. In: Webb, M. (eds) Cancer Susceptibility. Methods in Molecular Biology, vol 653. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-759-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-759-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-758-7

  • Online ISBN: 978-1-60761-759-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics