Skip to main content

Mitophagy and Mitoptosis in Disease Processes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

Mitochondria play a very important role in cellular function, not only through key metabolic reactions and energy generation, but also by being a major site for production of reactive oxygen species and a key player in cell death. Therefore, mitochondrial dysfunction or damage may have severe consequences. Mitophagy (autophagic degradation of mitochondria) and mitoptosis (programmed destruction of mitochondria) are the processes by which cells can deal with impaired mitochondria. The efficiency of these processes may be a contributing factor to the pathogenesis of various diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    Article  PubMed  CAS  Google Scholar 

  2. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    Article  PubMed  CAS  Google Scholar 

  3. Zick M, Rabl R, Reichert AS (2008) Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:5–19

    Article  PubMed  Google Scholar 

  4. Koppen M, Langer T (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42:221–242

    Article  PubMed  CAS  Google Scholar 

  5. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    Article  PubMed  CAS  Google Scholar 

  6. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  7. DiMauro S (2004) Mitochondrial diseases. Biochim Biophys Acta 1658:80–88

    Article  PubMed  CAS  Google Scholar 

  8. DiMauro S (2004) Mitochondrial medicine. Biochim Biophys Acta 1659:107–114

    Article  PubMed  CAS  Google Scholar 

  9. Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127(Pt 10):2153–2172

    Article  PubMed  Google Scholar 

  10. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  11. Acehan D, Xu Y, Stokes DL, Schlame M (2007) Comparison of lymphoblast mitochondria from normal subjects to patients with Barth syndrome using electron microscopy tomography. Lab Invest 87:40–48

    Article  PubMed  CAS  Google Scholar 

  12. Baloyannis SJ (2006) Mitochondrial alterations in Alzheimer’s disease. J Alzheimers Dis 9:119–126

    PubMed  Google Scholar 

  13. Griparic L, van der Bliek AM (2001) The many shapes of mitochondrial membranes. Traffic 2:235–244

    Article  PubMed  CAS  Google Scholar 

  14. Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569

    Article  PubMed  CAS  Google Scholar 

  15. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    Article  PubMed  CAS  Google Scholar 

  16. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  PubMed  CAS  Google Scholar 

  17. Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505

    Article  PubMed  CAS  Google Scholar 

  18. Warren G, Wickner W (1996) Organelle inheritance. Cell 84:395–400

    Article  PubMed  CAS  Google Scholar 

  19. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815–826

    Article  PubMed  CAS  Google Scholar 

  20. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  PubMed  CAS  Google Scholar 

  21. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  22. Sato A, Nakada K, Hayashi J (2006) Mitochondrial dynamics and aging: mitochondrial interaction preventing individuals from expression of respiratory deficiency caused by mutant mtDNA. Biochim Biophys Acta 1763:473–481

    Article  PubMed  CAS  Google Scholar 

  23. Olichon A, Guillou E, Delettre C, Landes T, Arnauné-Pelloquin L, Emorine LJ, Mils V, Daloyau M, Hamel C, Amati-Bonneau P, Bonneau D, Reynier P, Lenaers G, Belenguer P (2006) Mitochondrial dynamics and disease, OPA1. Biochim Biophys Acta 1763:500–509

    Article  PubMed  CAS  Google Scholar 

  24. Niemann A, Berger P, Suter U (2006) Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 8:217–242

    Article  PubMed  CAS  Google Scholar 

  25. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    Article  PubMed  CAS  Google Scholar 

  26. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  PubMed  CAS  Google Scholar 

  27. Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G (2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3:374–376

    PubMed  CAS  Google Scholar 

  28. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    Article  PubMed  CAS  Google Scholar 

  29. Yen WL, Klionsky DJ (2008) How to live longer and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 23:248–262

    Article  CAS  Google Scholar 

  30. Chu CT, Zhu J, Dagda R (2007) Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress. Autophagy 3:663–666

    PubMed  CAS  Google Scholar 

  31. Clark SL Jr (1957) Cellular differentiation in the kidneys of newborn mice studied with the electron microscope. J Biophys Biochem Cytol 3:349–362

    Article  PubMed  Google Scholar 

  32. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119:301–311

    Article  PubMed  CAS  Google Scholar 

  33. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  PubMed  CAS  Google Scholar 

  34. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  35. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  PubMed  CAS  Google Scholar 

  36. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez-Enriquez S, He L, Lemasters JJ (2004) Role of mitochondrial permea-bility transition pores in mitochondrial auto­phagy. Int J Biochem Cell Biol 36:2463–2472

    Article  PubMed  CAS  Google Scholar 

  38. Buetler TM, Krauskopf A, Ruegg UT (2004) Role of superoxide as a signaling molecule. News Physiol Sci 19:120–123

    PubMed  CAS  Google Scholar 

  39. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  PubMed  CAS  Google Scholar 

  40. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is autophagic question. Curr Mol Med 8:78–91

    Article  PubMed  CAS  Google Scholar 

  41. Kanki T, Klionsky DJ (2008) Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 283:32386–32393

    Article  PubMed  CAS  Google Scholar 

  42. Kiššová I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336

    PubMed  Google Scholar 

  43. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282:5617–5624

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Y, Qi H, Taylor R, Xu W, Liu LF, Jin S (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:337–346

    PubMed  CAS  Google Scholar 

  45. Narendra DA, Tanaka D, Suen F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  CAS  Google Scholar 

  46. McBride HM (2008) Parkin mitochondria in the autophagosome. J Cell Biol 183:757–759

    Article  PubMed  CAS  Google Scholar 

  47. Martinez-Vicente M, Sovak G, Cuervo AM (2005) Protein degradation and aging. Exp Gerontol 40:622–633

    Article  PubMed  CAS  Google Scholar 

  48. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    Article  PubMed  Google Scholar 

  49. Partin JC, Schubert WK, Partin JS (1971) Mitochondrial ultrastructure in Reye’s syndrome (encephalopathy and fatty degeneration of the viscera). N Engl J Med 285:1339–1343

    Article  PubMed  CAS  Google Scholar 

  50. Woodfin BM, Davis LE (1986) Liver autophagy in the influenza B virus model of Reye’s syndrome in mice. J Cell Biochem 31:271–275

    Article  PubMed  CAS  Google Scholar 

  51. Yin XM, Ding WX, Gao W (2008) Autophagy in the liver. Hepatology 47:1773–1785

    Article  PubMed  CAS  Google Scholar 

  52. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  PubMed  CAS  Google Scholar 

  53. Koury MJ, Koury ST, Kopsombut P, Bondurant MC (2005) In vitro maturation of nascent reticulocytes to erythrocytes. Blood 105:2168–2174

    Article  PubMed  CAS  Google Scholar 

  54. Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S (2005) Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437:754–758

    Article  PubMed  CAS  Google Scholar 

  55. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    Article  PubMed  CAS  Google Scholar 

  56. Sivilotti ML (2004) Oxidant stress and haemolysis of the human erythrocyte. Toxicol Rev 23:169–188

    Article  PubMed  CAS  Google Scholar 

  57. Tinari A, Garofalo T, Sorice M, Esposito MD, Malorni W (2007) Mitoptosis: different pathways for mitochondrial execution. Autophagy 3:282–284

    PubMed  Google Scholar 

  58. Zorov DB, Kinnally KW, Tedesci H (1992) Voltage activation of heart inner mitochondrial membrane channels. J Bioenerg Biomembr 24:119–124

    Article  PubMed  CAS  Google Scholar 

  59. Skulachev VP (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med 20:139–184

    Article  PubMed  CAS  Google Scholar 

  60. Skulachev VP (2002) Programmed death phenomena: from organelle to organism. Ann NY Acad Sci 959:214–237

    Article  PubMed  CAS  Google Scholar 

  61. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880

    Article  PubMed  CAS  Google Scholar 

  62. Kundu M, Thompson CB (2005) Macroauto-phagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 12:1484–1489

    Article  PubMed  CAS  Google Scholar 

  63. Lyamzaev KG, Nepryakhina OK, Saprunova VB, Bakeeva LE, Pletjushkina OY, Chernyak BV, Skulachev VP (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochim Biophys Acta 1777:817–825

    Article  PubMed  CAS  Google Scholar 

  64. Deming PB, Rathmell JC (2006) Mitochondria, cell death, and B cell tolerance. Curr Dir Autoimmun 9:95–119

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologise to investigators whose important original contributions have not been cited; where possible we have chosen to cite recent reviews in which details of such contributions can be found.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Devenish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mijaljica, D., Prescott, M., Devenish, R.J. (2010). Mitophagy and Mitoptosis in Disease Processes. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics