Skip to main content

Protein Aggregation Diseases: Toxicity of Soluble Prefibrillar Aggregates and Their Clinical Significance

  • Protocol
  • First Online:
Protein Misfolding and Cellular Stress in Disease and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

Amyloid diseases, the most clinically relevant protein misfolding pathologies due to the high prevalence of some of them in the population, are characterized by the presence, in specific tissues and organs, of fibrillar deposits of specific peptides or proteins. Increasing efforts are presently dedicated at investigating the structural features and the structure-toxicity relation of the soluble oligomeric precursors arising in the path of fibril formation. In fact, it is increasingly recognised that these unstable, dynamic assemblies are remarkably toxic to cells thus featuring these as the main factor responsible for cell impairment in amyloid diseases. This chapter will review shortly the data presently available on the structural and biochemical features of these assemblies, as well as on their biological and clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity, new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  3. Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta 1739:5–25

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  PubMed  CAS  Google Scholar 

  5. Reilly MM (1998) Genetically determined neuropathies. J Neurol 245:6–13

    Article  PubMed  CAS  Google Scholar 

  6. Kelly J (1998) Alternative conformation of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  7. Dobson CM (2001) The structural basis of protein folding and its links with human disease. Phil Trans R Soc Lond B 356:133–145

    Article  CAS  Google Scholar 

  8. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible nonfibrillar ligands derived from Aβ-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  PubMed  CAS  Google Scholar 

  9. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    Article  PubMed  CAS  Google Scholar 

  10. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  11. Conway KA, Lee S-J, Rochet JC, Ding TT, Williamson RE, Lansbury PT (2000) Acceleration of oligomerization not fibrillization is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease. Implication for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    Article  PubMed  CAS  Google Scholar 

  12. Reixach N, Deechingkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101:2817–2822

    Article  PubMed  CAS  Google Scholar 

  13. Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, McInnes RR (2000) A one-hit model of cell death in inherited neuronal degeneration. Nature 406:195–199

    Article  PubMed  CAS  Google Scholar 

  14. Perutz MF, Windle AH (2001) Cause of neuronal death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144

    Article  PubMed  CAS  Google Scholar 

  15. Litvinovich SV, Brew SA, Aota S, Akiyama SK, Haudenschild C, Ingham KC (1998) Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J Mol Biol 280:245–258

    Article  PubMed  CAS  Google Scholar 

  16. Gujiarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228

    Article  Google Scholar 

  17. Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96:3590–3594

    Article  PubMed  CAS  Google Scholar 

  18. Chiti F, Bucciantini M, Capanni C, Taddei N, Dobson CM, Stefani M (2001) Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci 10:2541–2547

    Article  PubMed  CAS  Google Scholar 

  19. Fändrich M, Dobson CM (2002) The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 21:5682–5690

    Article  PubMed  Google Scholar 

  20. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  21. Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8:737–742

    Article  PubMed  CAS  Google Scholar 

  22. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  23. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808

    Article  PubMed  CAS  Google Scholar 

  24. Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, Fraser PE (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300:1033–1039

    Article  PubMed  CAS  Google Scholar 

  25. Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci USA 99:9196–9201

    Article  PubMed  CAS  Google Scholar 

  26. Lührs T, Ri C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    Article  PubMed  CAS  Google Scholar 

  27. Quintas A, Vaz DC, Cardoso I, Saraiva MJM, Brito RMM (2001) Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem 276:27207–27213

    Article  PubMed  CAS  Google Scholar 

  28. Relini A, Torrassa S, Rolandi R, Ghiozzi A, Rosano C, Canale C, Bolognesi M, Plakoutsi G, Bucciantini M, Chiti F, Stefani M (2004) Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J Mol Biol 338:943–957

    Article  PubMed  CAS  Google Scholar 

  29. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT (2002) α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102

    Article  PubMed  CAS  Google Scholar 

  30. Poirier MA, Li H, Macosko J, Cail S, Amzel M, Ross CA (2002) Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrillization. J Biol Chem 277:41032–41037

    Article  PubMed  CAS  Google Scholar 

  31. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  32. Lin H, Bhatia R, Lal R (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    Article  PubMed  CAS  Google Scholar 

  33. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  34. Sirangelo I, Malmo C, Iannuzzi C, Mezzogiorno A, Bianco MR, Papa M, Irace G (2004) Fibrillogenesis and cytotoxic activity of the amyloid-forming apomyoglobin mutant W7FW14F. J Biol Chem 279:13183–13189

    Article  PubMed  CAS  Google Scholar 

  35. Ceru S, Kokalj SJ, Rabzelj S, Skarabot M, Gutierrez-Aguirre I, Kopitar-Jerala N, Anderluh G, Turk D, Turk V, Zerovnik E (2008) Size and morphology of toxic ­oligomers of amyloidogenic proteins: a case study of human stefin B. Amyloid 15:47–59

    Article  CAS  Google Scholar 

  36. O’Nuallain B, Wetzel R (2002) Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 99:1485–1490

    Article  PubMed  CAS  Google Scholar 

  37. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanisms of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  38. Ren P-H, Laucker JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  39. Chen Y, Kokholyan N (2005) A single disulfide bond differentiates aggregation pathways of β2-microglobulin. J Mol Biol 354:473–482

    Article  PubMed  CAS  Google Scholar 

  40. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of α-synuclein oligomers indice calcium influx and seeding. J Neurosci 271:9220–9232

    Article  CAS  Google Scholar 

  41. Bravo R, Arimon M, Valle-Delgado JJ, Garcia R, Durany N, Castel S, Cruz M, Ventura S, Fernandez-Busquets X (2008) Sulfated polysaccharides promote the assembly of amyloid β1-42 peptide into stable fibrils of reduced cytotoxicity. J Biol Chem 283:32471–32783

    Article  PubMed  CAS  Google Scholar 

  42. Gharibyan AL, Zamotin V, Yanamandra K, Moskaleva OS, Margulis BA, Kostanyan IA, Morozova-Roche LA (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J Mol Biol 365:1337–13349

    Article  PubMed  CAS  Google Scholar 

  43. Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836

    Article  PubMed  CAS  Google Scholar 

  44. Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284:4230–4237

    Article  PubMed  CAS  Google Scholar 

  45. Hirakura Y, Kagan BL (2001) Pore formation by beta-2-microglobulin: a mechanism for the pathogenesis of dialysis-associated amyloidosis. Amyloid 8:94–100

    Article  PubMed  CAS  Google Scholar 

  46. Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Pre-fibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382

    Article  PubMed  CAS  Google Scholar 

  47. Walsh DM, Selkoe DJ (2004) Oligomers on the brain, the emerging role of soluble protein aggregates in neurodegeneration. Protein Peptide Lett 11:1–16

    Article  Google Scholar 

  48. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  PubMed  CAS  Google Scholar 

  49. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers on amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572(2):477–492

    Article  PubMed  CAS  Google Scholar 

  50. Chromy BA, Nowak RJ, Lambert MP, Viola KI, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Aβ1-42 into globular neurotoxins. Biochemistry 42:12749–12760

    Article  PubMed  CAS  Google Scholar 

  51. Gong Y, Chang I, Viola KI, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WI (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422

    Article  PubMed  CAS  Google Scholar 

  52. Lesné S, Koh MT, Kotlinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  53. Gouras GK, Tsai J, Nasslund J, Vincent B, Edgar M, Checler F, Greefiels JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Aβ accumulation in human brain. Am J Pathol 156:15–20

    Article  PubMed  CAS  Google Scholar 

  54. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of β-amyloid (amylospheroid show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA 100:6370–6375

    Article  PubMed  CAS  Google Scholar 

  55. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid β-protein begins intracellularly in cell derived from human brain. Biochemistry 39:10831–10839

    Article  PubMed  CAS  Google Scholar 

  56. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla F (2005) Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  PubMed  CAS  Google Scholar 

  57. Dickson DW (1995) Correlation of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298

    Article  PubMed  CAS  Google Scholar 

  58. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106:4012–4027

    Article  PubMed  CAS  Google Scholar 

  59. Carulla N, Caddy GL, Hall DR, Zurdo J, Gairi M, Feliz M, Giralt E, Robinson C, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558

    Article  PubMed  CAS  Google Scholar 

  60. Smith JF, Knowles TPJ, Dobson CM, MacPhee CE, Welland ME (2006) Character-ization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103:15806–15811

    Article  PubMed  CAS  Google Scholar 

  61. Martins IC, Kuperstein I, Wilkinson H, Maes E, Vambrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233

    Article  PubMed  CAS  Google Scholar 

  62. Pellistri F, Bucciantini M, Relini A, Gliozzi A, Robello M, Stefani M (2008) Generic interaction of pre-fibrillar amyloid aggregates with NMDA and AMPA receptors results in free Ca2+ increase in primary neuronal cells. J Biol Chem 283:29950–29960

    Article  PubMed  CAS  Google Scholar 

  63. Pepys MB (1995) In: Wheaterall DJ, Ledingham JG, Warrel DA (eds) Oxford textbook of medicine, 3rd Edition, Oxford University Press, Oxford, pp 1512–1524.

    Google Scholar 

  64. Arispe N, Rojas E, Pollard HD (1993) Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Proc Natl Acad Sci USA 89:10940–10944

    Google Scholar 

  65. Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271:1988–1992

    Article  PubMed  CAS  Google Scholar 

  66. Kourie JI (1999) Synthetic C-type mammalian natriuretic peptide forms large cation selective channels. FEBS Lett 445:57–62

    Article  PubMed  CAS  Google Scholar 

  67. Volles MJ, Lansbury PT (2001) Vesicle permeabilization by protofibrillar α-synuclein: comparison of wild-type with Parkinson’s disease linked mutants and insights in the mechanisms. Biochemistry 40:7812–7819

    Article  PubMed  CAS  Google Scholar 

  68. Zhu YJ, Lin H, Lal R (2000) Fresh and nonfibrillar amyloid β protein (1-40) induces rapid cellular degeneration in aged human fibroblasts: evidence for AβP-channel-mediated cellular toxicity. FASEB J 14:1244–1254

    PubMed  CAS  Google Scholar 

  69. Ferreiro E, Resende R, Costa R, Oliveira C, Pereira CMF (2006) An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol Dis 23:669–678

    Article  PubMed  CAS  Google Scholar 

  70. Aleardi AM, Bernard G, Augereau O, Malgat M, Talbot JC, Mazat JP, Letellier T, Dachary-Prigent J, Solaini GC, Rossignol R (2005) Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomem 37:207–225

    Article  CAS  Google Scholar 

  71. King ME, Kan H-M, Baas PW, Erisir A, Glabe CG, Bloom S (2006) Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J Cell Biol 175:541–546

    Article  PubMed  CAS  Google Scholar 

  72. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  PubMed  CAS  Google Scholar 

  73. Sherman MY, Goldberg AL (2001) Cellular defences against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    Article  PubMed  CAS  Google Scholar 

  74. Kayed R, Sokolow Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    Article  PubMed  CAS  Google Scholar 

  75. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  PubMed  CAS  Google Scholar 

  76. Kourie JI, Shorthouse AA (2000) Properties of cytotoxic peptide-induced ion channels. Am J Physiol Cell Physiol 278:C1063–C1087

    PubMed  CAS  Google Scholar 

  77. Wang L, Lashuel HA, Walz T, Colòn W (2002) Murine apolipoprotein serum amyloid A in solution forms a hexamer containing a central channel. Proc Natl Acad Sci USA 99:15947–15952

    Article  PubMed  CAS  Google Scholar 

  78. Chung J, Yang H, de Beus MD, Ryu CY, Cho K, Colòn W (2003) Cu/Zn superoxide dismutase can form pore-like structures. Biochem Biophys Res Commun 312:873–876

    Article  PubMed  CAS  Google Scholar 

  79. Srinivasan R, Marchant RE, Zagorski MG (2004) ABri peptide associated with familial British dementia forms annular and ring-like protofibrillar structures. Amyloid 11:10–13

    Article  PubMed  CAS  Google Scholar 

  80. Vendrely C, Valadie H, Bednarova L, Cardin L, Pasdeloup M, Cappadoro J, Bednar J, Rinaudo M, Jamin M (2005) Assembly of the full-length recombinant mouse prion protein I. Formation of soluble oligomers. Biochim Biophys Acta 1724:355–366

    Article  PubMed  CAS  Google Scholar 

  81. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560

    PubMed  CAS  Google Scholar 

  82. Velez-Pardo C, Arroyave ST, Lopera F, Castano AD, Jimenez Del Rio M (2001) Ultrastructure evidence of necrotic neural cell death in familial Alzheimer’s disease brains bearing presenilin-1 E280A mutation. J Alzheimer’s Dis 3:409–415

    Google Scholar 

  83. Bucciantini M, Rigacci S, Berti A, Pieri L, Cecchi C, Nosi D, Formigli L, Chiti F, Stefani M (2005) Patterns of cell death triggered in two different cell lines by HypF-N pre-fibrillar aggregates. FASEB J 19:437–439

    PubMed  CAS  Google Scholar 

  84. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822

    Article  PubMed  CAS  Google Scholar 

  85. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    Article  PubMed  CAS  Google Scholar 

  86. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  PubMed  CAS  Google Scholar 

  87. Chevalier-Larsen E, Holzbaur ELF (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta 1762:1094–1108

    Article  PubMed  CAS  Google Scholar 

  88. Brandt R, Hundelt M, Shahani N (2004) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta 1739:331–354

    Google Scholar 

  89. Shen Y, He P, Zhong Z, McAllister C, Lindholm K (2006) Distinct destructive signal pathways of neuronal death in Alzheimer’s disease. Trends Mol Med 12:574–579

    Article  PubMed  CAS  Google Scholar 

  90. Choi YG, Kim JL, Lee HP, Jin JK, Choi EK, Carp RI, Kim YS (2000) Induction of heme oxygenase-1 in the brain of scrapie-infected mice. Neurosci Lett 11:173–176

    Article  Google Scholar 

  91. Zhang L, Xing Gq, Barker JL, Chang Y, Maric D, Ma W, Li B-s, Rubinow DR (2001) α-Lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett 312:125–128

    Article  PubMed  CAS  Google Scholar 

  92. Lee DW, Sohn HO, Lim HB, Lee YG, Kim YS, Carp RJ, Wisnievski HM (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Rad Res 30:499–507

    Article  CAS  Google Scholar 

  93. Keller JN, Huang FF, Markesbery WR (2002) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156

    Article  Google Scholar 

  94. Butterfield AD, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzeimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554

    Article  PubMed  CAS  Google Scholar 

  95. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  PubMed  CAS  Google Scholar 

  96. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    Article  PubMed  CAS  Google Scholar 

  97. Kawahara M (2004) Disruption of calcium homeostasis in the pathogenesis of Alzheimer’s disease and other conformational diseases. Curr Alz Res 1:87–95

    Article  CAS  Google Scholar 

  98. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert M, Velasco PT, Bigio EH, Finch CE, Krafft G, Klein WI (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  99. Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, Rigacci S, Bucciantini M, Stefani M (2005) Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 118:3459–3470

    Article  PubMed  CAS  Google Scholar 

  100. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    Article  PubMed  CAS  Google Scholar 

  101. van den Berg B, Ellis J, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    Article  PubMed  Google Scholar 

  102. Ran S, Thorpe PE (2002) Phosphatidylserine is a marker of tumour vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 54:1479–1484

    Article  PubMed  CAS  Google Scholar 

  103. Stefani M (2008) Protein folding, misfolding and aggregation on surfaces. Int J Mol Sci 9:2515–2542

    Article  PubMed  CAS  Google Scholar 

  104. Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26:6011–6018

    Article  PubMed  CAS  Google Scholar 

  105. Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Tanaka M (2009) Distinct conformations of in vitro and vivo amyloids of huntingtin-exon 1 show different cytotoxicity. Proc Natl Acad Sci USA 106:9679–9684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support from the Ente Cassa di Risparmio di Firenze and Italian MURST (PRIN Project 2007XY59ZJ_001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Stefani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stefani, M. (2010). Protein Aggregation Diseases: Toxicity of Soluble Prefibrillar Aggregates and Their Clinical Significance. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics