Skip to main content

Seeing Genetic and Epigenetic Information Without DNA Denaturation Using Sequence-Enabled Reassembly (SEER)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

Virtually all methods for reading the sequence of bases in DNA rely on the ability to denature double-stranded DNA into single strands and then use Watson–Crick base-pairing rules to hybridize the strands with high specificity to another DNA primer or probe. However, nature frequently uses an alternative method, reading the sequence information directly from double-stranded DNA using sequence-specific DNA-binding proteins. Here we describe methods for the construction and testing of sequence probes based on engineered zinc finger DNA-binding proteins. Background is reduced using split-reporter molecules, and signal is amplified using enzymatic reporters. The resulting sequence-enabled reassembly (SEER) probes can be configured to detect DNA sequence (genetic) or DNA methylation (epigenetic) information.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fechter, E.J., Olenyuk, B., and Dervan, P.B. (2005) Sequence-specific fluorescence detection of DNA by polyamide-thiazole orange conjugates. J Am Chem Soc. 127, 16685–16691.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, M.D., 3rd and Fresco, J.R. (1999) Third-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei. Chromosoma. 108, 181–189.

    Article  PubMed  CAS  Google Scholar 

  3. Levsky, J.M. and Singer, R.H. (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci. 116, 2833–2838.

    Article  PubMed  CAS  Google Scholar 

  4. Rucker, V.C., Foister, S., Melander, C., and Dervan, P.B. (2003) Sequence specific fluorescence detection of double strand DNA. J Am Chem Soc. 125, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  5. Ooi, A.T., Stains, C.I., Ghosh, I., and Segal, D.J. (2006) Sequence-enabled reassembly of beta-lactamase (SEER-LAC): A sensitive method for the detection of double-stranded DNA. Biochemistry. 45, 3620–3625.

    Article  PubMed  CAS  Google Scholar 

  6. Stains, C.I., Porter, J.R., Ooi, A.T., Segal, D.J., and Ghosh, I. (2005) DNA sequence-enabled reassembly of the green fluorescent protein. J Am Chem Soc. 127, 10782–10783.

    Article  PubMed  CAS  Google Scholar 

  7. Porter, J.R., Stains, C.I., Segal, D.J., and Ghosh, I. (2007) Split beta-lactamase sensor for the sequence-specific detection of DNA methylation. Anal Chem. 79, 6702–6708.

    Article  PubMed  CAS  Google Scholar 

  8. Stains, C.I., Furman, J.L., Segal, D.J., and Ghosh, I. (2006) Site-specific detection of DNA methylation utilizing mCpG-SEER. J Am Chem Soc. 128, 9761–9765.

    Article  PubMed  CAS  Google Scholar 

  9. Porter, J.R., Stains, C.I., Jester, B.W., and Ghosh, I. (2008) A general and rapid cell-free approach for the interrogation of protein-protein, protein-DNA, and protein-RNA interactions and their antagonists utilizing split-protein reporters. J Am Chem Soc. 130, 6488–6497.

    Article  PubMed  CAS  Google Scholar 

  10. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., and Barbas, C.F., 3rd (2001) Development of zinc finger domains for recognition of the 5-ANN-3 family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem. 276, 29466–29478.

    Article  PubMed  CAS  Google Scholar 

  11. Dreier, B., Fuller, R.P., Segal, D.J., Lund, C.V., Blancafort, P., Huber, A., Koksch, B., and Barbas, C.F., 3rd (2005) Development of zinc finger domains for recognition of the 5-CNN-3 family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem. 280, 35588–35597.

    Article  PubMed  CAS  Google Scholar 

  12. Segal, D.J., Dreier, B., Beerli, R.R., and Barbas, C.F., 3rd (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5-GNN-3 DNA target sequences. Proc Natl Acad Sci USA. 96, 2758–2763.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Porter, J.R., Lockwood, S.H., Segal, D.J., Ghosh, I. (2010). Seeing Genetic and Epigenetic Information Without DNA Denaturation Using Sequence-Enabled Reassembly (SEER). In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics