Skip to main content

Quantification of Zinc Finger Nuclease-Associated Toxicity

  • Protocol
  • First Online:
Engineered Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

The recent development of artificial zinc finger nucleases (ZFNs) for targeted genome editing has opened a broad range of possibilities in biotechnology and gene therapy. The ZFN technology allows a researcher to deliberately choose a target site in a complex genome and create appropriate nucleases to insert a DNA double-strand break (DSB) at that site. Gene editing frequencies of up to 50% in non-selected human cells attest to the power of this technology. Potential side effects of applying ZFNs include toxicity due to cleavage at off-target sites. This can be brought about by insufficient specificity of DNA binding, hence allowing ZFN activity at similar target sequences within the genome, or by activation of the ZFN nuclease domains before the nuclease is properly bound to the DNA. Here, we describe two different methods to quantify ZFN-associated toxicity: the genotoxicity assay is based on quantification of DSB repair foci induced by ZFNs whereas the cytotoxicity is based on assessing cell survival after application of ZFNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segal, D.J., Cathomen, T., and Joung, J.K. (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther. 16, 1200–1207.

    CAS  Google Scholar 

  2. Carroll, D. (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  3. Elrod-Erickson, M., Rould, M.A., Nekludova, L., and Pabo, C.O. (1996) Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 4, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  4. Pavletich, N.P. and Pabo, C.O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 252, 809–817.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, J., Bibikova, M., Whitby, F.G., Reddy, A.R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369.

    Article  PubMed  CAS  Google Scholar 

  6. Bitinaite, J., Wah, D.A., Aggarwal, A.K., and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA. 95, 10570–10575.

    Article  PubMed  CAS  Google Scholar 

  7. Bibikova, M., Carroll, D., Segal, D.J., Trautman, J.K., Smith, J., Kim, Y.G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. 21, 289–297.

    Article  PubMed  CAS  Google Scholar 

  8. Handel, E.M., Alwin, S., and Cathomen, T. (2009) Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. 17, 104–111.

    Article  PubMed  Google Scholar 

  9. Lombardo, A., Genovese, P., Beausejour, C.M., Colleoni, S., Lee, Y.L., Kim, K.A., Ando, D., Urnov, F.D., Galli, C., Gregory, P.D., Holmes, M.C., and Naldini, L. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 25, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  10. Maeder, M.L., Thibodeau-Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M., Eichtinger, M., Jiang, T., Foley, J.E., Winfrey, R.J., Townsend, J.A., Unger-Wallace, E., Sander, J.D., Muller-Lerch, F., Fu, F., Pearlberg, J., Gobel, C., Dassie, J.P., Pruett-Miller, S.M., Porteus, M.H., Sgroi, D.C., Iafrate, A.J., Dobbs, D., McCray, P.B., Jr., Cathomen, T., Voytas, D.F., and Joung, J.K. (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 31, 294–301.

    Article  PubMed  CAS  Google Scholar 

  11. Cornu, T.I., Thibodeau-Beganny, S., Guhl, E., Alwin, S., Eichtinger, M., Joung, J.K., and Cathomen, T. (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 16, 352–358.

    Article  PubMed  CAS  Google Scholar 

  12. Szczepek, M., Brondani, V., Buchel, J., Serrano, L., Segal, D.J., and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 25, 786–793.

    Article  PubMed  CAS  Google Scholar 

  13. Alwin, S., Gere, M.B., Guhl, E., Effertz, K., Barbas, C.F., 3rd, Segal, D.J., Weitzman, M.D., and Cathomen, T. (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther. 12, 610–617.

    Article  PubMed  CAS  Google Scholar 

  14. Miller, J.C., Holmes, M.C., Wang, J., Guschin, D.Y., Lee, Y.L., Rupniewski, I., Beausejour, C.M., Waite, A.J., Wang, N.S., Kim, K.A., Gregory, P.D., Pabo, C.O., and Rebar, E.J. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 25, 778–785.

    Article  PubMed  CAS  Google Scholar 

  15. Pruett-Miller, S.M., Connelly, J.P., Maeder, M.L., Joung, J.K., and Porteus, M.H. (2008) Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther. 16, 707–717.

    Article  PubMed  CAS  Google Scholar 

  16. Porteus, M.H. and Baltimore, D. (2003) Chimeric nucleases stimulate gene targeting in human cells. Science. 300, 763.

    Article  PubMed  Google Scholar 

  17. Foley, J.E., Yeh, J.R., Maeder, M.L., Reyon, D., Sander, J.D., Peterson, R.T., and Joung, J.K. (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE. 4, e4348.

    Article  PubMed  Google Scholar 

  18. Rogakou, E.P., Boon, C., Redon, C., and Bonner, W.M. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146, 905–916.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cem Şöllü for careful reading of the chapter. This chapter is based on work supported by grant CA 311/2 of the Research Priority Programme 1230 (SPP 1230) of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cornu, T.I., Cathomen, T. (2010). Quantification of Zinc Finger Nuclease-Associated Toxicity. In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics