Skip to main content

Modeling Risk Factors and Confounding Effects in Stroke

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 47))

Abstract

Most research to date has used experimental models in rodents which fail to mimic the underlying causes of stroke in patients or the primary confounding factors. Available data indicate that factors such as atherosclerosis, hypertension, obesity, diabetes, age, and inflammation have a major influence on outcome. These findings suggest that we need to rethink the preclinical data that are required before selection of candidate interventions for clinical trials in stroke.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. STAIR (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30:2752–2758

    Article  Google Scholar 

  2. Del Zoppo GJ (1995) Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J Intern Med 237:79–88

    Article  PubMed  Google Scholar 

  3. Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136

    Article  PubMed  Google Scholar 

  4. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1:36–45

    Article  PubMed  Google Scholar 

  5. Crossley NA, Sena E, Goehler J, Horn J, van der Worp B, Bath PM, Macleod M, Dirnagl U (2008) Empirical evidence of bias in the design of experimental stroke studies: a metaepidemiologic approach. Stroke 39:929–934

    Article  PubMed  Google Scholar 

  6. Hankey GJ (2006) Potential new risk factors for ischemic stroke: what is their potential? Stroke 37:2181–2188

    Article  PubMed  Google Scholar 

  7. Fisher M (2008) Stroke and TIA: epidemiology, risk factors, and the need for early intervention. Am J Manag Care 14:S204–S211

    PubMed  Google Scholar 

  8. Alberts MJ, Atkinson R (2004) Risk reduction strategies in ischaemic stroke: the role of antiplatelet therapy. Clin Drug Investig 24:245–254

    Article  PubMed  CAS  Google Scholar 

  9. Sacco RL, Adams R, Albers G, Alberts MJ, Benavente O, Furie K, Goldstein LB, Gorelick P, Halperin J, Harbaugh R, Johnston SC, Katzan I, Kelly-Hayes M, Kenton EJ, Marks M, Schwamm LH, Tomsick T (2006) Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Stroke 37:577–617

    Article  PubMed  Google Scholar 

  10. Kelly BM, Pangilinan PH Jr, Rodriguez GM (2007) The stroke rehabilitation paradigm. Phys Med Rehabil Clin N Am 18:631–650, v

    Article  PubMed  Google Scholar 

  11. Boden-Albala B, Cammack S, Chong J, Wang C, Wright C, Rundek T, Elkind MS, Paik MC, Sacco RL (2008) Diabetes, fasting glucose levels, and risk of ischemic stroke and vascular events: findings from the Northern Manhattan Study (NOMAS). Diabetes Care 31:1132–1137

    Article  PubMed  Google Scholar 

  12. Lawes CM, Bennett DA, Feigin VL, Rodgers A (2004) Blood pressure and stroke: an overview of published reviews. Stroke 35:1024

    Article  PubMed  Google Scholar 

  13. Wagner J, Klotz S, Haufe CC, Danser JA, Amann K, Ganten D, Ritz E (1997) Progression of renal failure after subtotal nephrectomy in transgenic rats carrying an additional renin gene [TGR(mREN2)27]. J Hypertens 15:441–449

    Article  PubMed  CAS  Google Scholar 

  14. Bianchi G, Ferrari P, Barber BR (1984) The Milan hypertensive strain. In: de Jong W (ed) Handbook of hypertension: experimental and genetic models of hypertension. Elsevier, Amsterdam, pp 328–349

    Google Scholar 

  15. Phelan EL (1968) The New Zealand strain of rats with genetic hypertension. N Z Med J 67:334–344

    PubMed  CAS  Google Scholar 

  16. Vincent M, Sacquet J, Sassard J (1984) The Lyon strains of hypertensive, normotensive and low-blood-pressure rats. In: de Jong W (ed) Handbook of hypertension: experimental and genetic models of hypertension. Elsevier, Amsterdam, pp 314–327

    Google Scholar 

  17. Prusty S, Kemper T, Moss MB, Hollander W (1988) Occurrence of stroke in a nonhuman primate model of cerebrovascular disease. Stroke 19:84–90

    Article  PubMed  CAS  Google Scholar 

  18. Fredriksson K, Kalimo H, Nordborg C, Johansson BB, Olsson Y (1988) Nerve cell injury in the brain of stroke-prone spontaneously hypertensive rats. Acta Neuropathol 76:227–237

    Article  PubMed  CAS  Google Scholar 

  19. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  PubMed  CAS  Google Scholar 

  20. Shibota M, Nagaoka A, Shino A, Fujita T (1979) Renin-angiotensin system in stroke-prone spontaneously hypertensive rats. Am J Physiol 236:H409–H416

    PubMed  CAS  Google Scholar 

  21. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805

    Article  PubMed  CAS  Google Scholar 

  22. Yamori Y, Horie R, Handa H, Sato M, Fukase M (1976) Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 7:46–53

    Article  PubMed  CAS  Google Scholar 

  23. Jacewicz M (1992) The hypertensive rat and predisposition to cerebral infarction. Hypertension 19:47–48

    Article  PubMed  CAS  Google Scholar 

  24. Coyle P, Jokelainen PT (1982) Dorsal cerebral arterial collaterals of the rat. Anat Rec 203:397–404

    Article  PubMed  CAS  Google Scholar 

  25. Nabika T, Cui Z, Masuda J (2004) The stroke-prone spontaneously hypertensive rat: how good is it as a model for cerebrovascular diseases? Cell Mol Neurobiol 24:639–646

    Article  PubMed  Google Scholar 

  26. Coyle P, Heistad DD (1986) Blood flow through cerebral collateral vessels in hypertensive and normotensive rats. Hypertension 8:II67–II71

    PubMed  CAS  Google Scholar 

  27. Baumbach GL, Heistad DD, Siems JE (1989) Effect of sympathetic nerves on composition and distensibility of cerebral arterioles in rats. J Physiol 416:123–140

    PubMed  CAS  Google Scholar 

  28. Yang ST, Faraci FM, Heistad DD (1993) Effects of cilazapril on cerebral vasodilatation in hypertensive rats. Hypertension 22:150–155

    Article  PubMed  CAS  Google Scholar 

  29. Churchill PC, Churchill MC, Griffin KA, Picken M, Webb RC, Kurtz TW, Bidani AK (2002) Increased genetic susceptibility to renal damage in the stroke-prone spontaneously hypertensive rat. Kidney Int 61:1794–1800

    Article  PubMed  Google Scholar 

  30. Tajima A, Hans FJ, Livingstone D, Wei L, Finnegan W, DeMaro J, Fenstermacher J (1993) Smaller local brain volumes and cerebral atrophy in spontaneously hypertensive rats. Hypertension 21:105–111

    Article  PubMed  CAS  Google Scholar 

  31. Bendel P, Eilam R (1992) Quantitation of ventricular size in normal and spontaneously hypertensive rats by magnetic resonance imaging. Brain Res 574:224–228

    Article  PubMed  CAS  Google Scholar 

  32. Mangiarua EI, Lee RM (1992) Morphometric study of cerebral arteries from spontaneously hypertensive and stroke-prone spontaneously hypertensive rats. J Hypertens 10:1183–1190

    Article  PubMed  CAS  Google Scholar 

  33. Liu Y, Liu T, McCarron RM, Spatz M, Feuerstein G, Hallenbeck JM, Siren AL (1996) Evidence for activation of endothelium and monocytes in hypertensive rats. Am J Physiol 270:H2125–H2131

    PubMed  CAS  Google Scholar 

  34. Fukushima M (1968) Histometric and histochemical studies of the hypothalamo-hypophyseal neurosecretory system of spontaneously hypertensive rats and rats with experimental hypertension. Jpn Circ J 32:485–516

    Article  PubMed  CAS  Google Scholar 

  35. Nelson DO, Boulant JA (1981) Altered CNS neuroanatomical organization of spontaneously hypertensive (SHR) rats. Brain Res 226:119–130

    Article  PubMed  CAS  Google Scholar 

  36. Spratt NJ, Fernandez J, Chen M, Rewell S, Cox S, van Raay L, Hogan L, Howells DW (2006) Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J Neurosci Methods 155:285–290

    Article  PubMed  Google Scholar 

  37. Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ (1992) Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci Biobehav Rev 16:219–233

    Article  PubMed  CAS  Google Scholar 

  38. Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20:1627–1642

    Article  PubMed  CAS  Google Scholar 

  39. Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W (1988) Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 8:474–485

    Article  PubMed  CAS  Google Scholar 

  40. Gratton JA, Sauter A, Rudin M, Lees KR, McColl J, Reid JL, Dominiczak AF, Macrae IM (1998) Susceptibility to cerebral infarction in the stroke-prone spontaneously hypertensive rat is inherited as a dominant trait. Stroke 29:690–694

    Article  PubMed  CAS  Google Scholar 

  41. Ogata J, Fujishima M, Morotomi Y, Omae T (1976) Cerebral infarction following bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats: a pathological study. Stroke 7:54–60

    Article  PubMed  CAS  Google Scholar 

  42. Baskaya MK, Dogan A, Dempsey RJ (1999) Application of endovascular suture occlusion of middle cerebral artery in gerbils to obtain consistent infarction. Neurol Res 21:574–578

    PubMed  CAS  Google Scholar 

  43. Sena E, van der Worp HB, Howells D, Macleod M (2007) How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci 30:433–439

    Article  PubMed  CAS  Google Scholar 

  44. Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35:1203–1208

    Article  PubMed  Google Scholar 

  45. Macleod MR, O’Collins T, Horky LL, Howells DW, Donnan GA (2005) Systematic review and metaanalysis of the efficacy of FK506 in experimental stroke. J Cereb Blood Flow Metab 25:713–721

    Article  PubMed  CAS  Google Scholar 

  46. Kawamura S, Li Y, Shirasawa M, Yasui N, Fukasawa H (1998) Effects of treatment with nilvadipine on cerebral ischemia in rats. Tohoku J Exp Med 185:239–246

    Article  PubMed  CAS  Google Scholar 

  47. Sauter A, Rudin M (1991) Prevention of stroke and brain damage with calcium antagonists in animals. Am J Hypertens 4:121S–127S

    PubMed  CAS  Google Scholar 

  48. Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD (1998) Gender-linked brain injury in experimental stroke. Stroke 29:159–165, discussion: 166

    Article  PubMed  CAS  Google Scholar 

  49. Yamakawa H, Jezova M, Ando H, Saavedra JM (2003) Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 23:371–380

    Article  PubMed  CAS  Google Scholar 

  50. Prado R, Watson BD, Zhao W, Yao H, Busto R, Dietrich WD, Ginsberg MD (1996) l-arginine does not improve cortical perfusion or histopathological outcome in spontaneously hypertensive rats subjected to distal middle cerebral artery photothrombotic occlusion. J Cereb Blood Flow Metab 16:612–622

    Article  PubMed  CAS  Google Scholar 

  51. Morikawa E, Huang Z, Moskowitz MA (1992) l-arginine decreases infarct size caused by middle cerebral arterial occlusion in SHR. Am J Physiol 263:H1632–H1635

    PubMed  CAS  Google Scholar 

  52. Roussel S, Pinard E, Seylaz J (1992) Effect of MK-801 on focal brain infarction in normotensive and hypertensive rats. Hypertension 19:40–46

    Article  PubMed  CAS  Google Scholar 

  53. Dirnagl U, Tanabe J, Pulsinelli W (1990) Pre- and post-treatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain Res 527:62–68

    Article  PubMed  CAS  Google Scholar 

  54. Amiri F, Garcia R (1997) Renal angiotensin II receptor regulation in two-kidney, one clip hypertensive rats: effect of ACE inhibition. Hypertension 30:337–344

    Article  PubMed  CAS  Google Scholar 

  55. Fujishima M, Onoyama K, Oniki H, Ogata J, Omae T (1978) Effects of acute hypertension on brain metabolism in normotensive, renovascular hypertensive and spontaneously hypertensive rats. Stroke 9:349–353

    Article  PubMed  CAS  Google Scholar 

  56. Zeng J, Zhang Y, Mo J, Su Z, Huang R (1998) Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke 29:1708–1713, discussion: 1713–1714

    Article  PubMed  CAS  Google Scholar 

  57. Del Bigio MR, Yan HJ, Kozlowski P, Sutherland GR, Peeling J (1999) Serial magnetic resonance imaging of rat brain after induction of renal hypertension. Stroke 30:2440–2447

    Article  PubMed  Google Scholar 

  58. Zhao BQ, Tejima E, Lo EH (2007) Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke 38:748–752

    Article  PubMed  CAS  Google Scholar 

  59. Meneely GR, Ball CO (1958) Experimental epidemiology of chronic sodium chloride toxicity and the protective effect of potassium chloride. Am J Med 25:713–725

    Article  PubMed  CAS  Google Scholar 

  60. Payne GW, Smeda JS (2002) Cerebrovascular alterations in pressure and protein kinase C-mediated constriction in Dahl salt-sensitive rats. J Hypertens 20:1355–1363

    Article  PubMed  CAS  Google Scholar 

  61. Rapp JP, Dene H (1985) Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 7:340–349

    PubMed  CAS  Google Scholar 

  62. Bright R, Steinberg GK, Mochly-Rosen D (2007) DeltaPKC mediates microcerebrovascular dysfunction in acute ischemia and in chronic hypertensive stress in vivo. Brain Res 1144:146–155

    Article  PubMed  CAS  Google Scholar 

  63. Sukamoto T, Shiono K, Watanabe TX, Sokabe H (1980) Effects of beta-adrenergic blocking drugs in hypertensive rats. J Pharmacobiodyn 3:1–10

    Article  PubMed  CAS  Google Scholar 

  64. Coyle P (1984) Outcomes to middle cerebral artery occlusion in hypertensive and normotensive rats. Hypertension 6:I69–I74

    Article  PubMed  CAS  Google Scholar 

  65. Dorrance AM, Rupp NC, Nogueira EF (2006) Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia. Hypertension 47:590–595

    Article  PubMed  CAS  Google Scholar 

  66. Kaarisalo MM, Raiha I, Sivenius J, Immonen-Raiha P, Lehtonen A, Sarti C, Mahonen M, Torppa J, Tuomilehto J, Salomaa V (2005) Diabetes worsens the outcome of acute ischemic stroke. Diabetes Res Clin Pract 69:293–298

    Article  PubMed  Google Scholar 

  67. Williams LS, Rotich J, Qi R, Fineberg N, Espay A, Bruno A, Fineberg SE, Tierney WR (2002) Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke. Neurology 59:67–71

    Article  PubMed  CAS  Google Scholar 

  68. Sundquist K, Li X (2006) Type 1 diabetes as a risk factor for stroke in men and women aged 15–49: a nationwide study from Sweden. Diabet Med 23:1261–1267

    Article  PubMed  CAS  Google Scholar 

  69. Jeerakathil T, Johnson JA, Simpson SH, Majumdar SR (2007) Short-term risk for stroke is doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke 38:1739–1743

    Article  PubMed  Google Scholar 

  70. Poppe AY, Majumdar SR, Jeerakathil T, Ghali W, Buchan AM, Hill MD (2009) Admission hyperglycemia predicts a worse outcome in stroke patients treated with intravenous thrombolysis. Diabetes Care 32:617–622

    Article  PubMed  Google Scholar 

  71. Yong M, Kaste M (2008) Dynamic of hyperglycemia as a predictor of stroke outcome in the ECASS-II trial. Stroke 39:2749–2755

    Article  PubMed  Google Scholar 

  72. Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359–370

    Article  PubMed  CAS  Google Scholar 

  73. Ergul A, Elgebaly MM, Middlemore ML, Li W, Elewa H, Switzer JA, Hall C, Kozak A, Fagan SC (2007) Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol 7:33

    Article  PubMed  CAS  Google Scholar 

  74. Takaya K, Ogawa Y, Isse N, Okazaki T, Satoh N, Masuzaki H, Mori K, Tamura N, Hosoda K, Nakao K (1996) Molecular cloning of rat leptin receptor isoform complementary DNAs – identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun 225:75–83

    Article  PubMed  CAS  Google Scholar 

  75. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  PubMed  CAS  Google Scholar 

  76. Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, Hsu CY, Vo KD, Lin W (2007) Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 38:3289–3291

    Article  PubMed  Google Scholar 

  77. de Courten-Myers GM, Kleinholz M, Wagner KR, Myers RE (1989) Fatal strokes in hyperglycemic cats. Stroke 20:1707–1715

    Article  PubMed  Google Scholar 

  78. Palmon SC, Sieber FE, Brown PR, Koehler RC, Eleff SM, Traystman RJ (1995) Poor hemodynamic and metabolic recovery after global incomplete cerebral ischemia associated with short-term diabetes in dogs. J Cereb Blood Flow Metab 15:673–680

    Article  PubMed  CAS  Google Scholar 

  79. Kraft SA, Larson CP Jr, Shuer LM, Steinberg GK, Benson GV, Pearl RG (1990) Effect of hyperglycemia on neuronal changes in a rabbit model of focal cerebral ischemia. Stroke 21:447–450

    Article  PubMed  CAS  Google Scholar 

  80. Myers RE, Yamaguchi S (1977) Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol 34:65–74

    Article  PubMed  CAS  Google Scholar 

  81. Martin A, Rojas S, Chamorro A, Falcon C, Bargallo N, Planas AM (2006) Why does acute hyperglycemia worsen the outcome of transient focal cerebral ischemia? Role of corticosteroids, inflammation, and protein O-glycosylation. Stroke 37:1288–1295

    Article  PubMed  Google Scholar 

  82. Ennis SR, Keep RF (2007) Effect of sustained-mild and transient-severe hyperglycemia on ischemia-induced blood–brain barrier opening. J Cereb Blood Flow Metab 27:1573–1582

    Article  PubMed  CAS  Google Scholar 

  83. Gualillo O, Gonzalez-Juanatey JR, Lago F (2007) The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives. Trends Cardiovasc Med 17:275–283

    Article  PubMed  CAS  Google Scholar 

  84. Wexler BC (1975) Chronic diabetes followed by chronic cerebral ischemia induced by bilateral carotid artery ligation in arteriosclerotic versus nonarteriosclerotic rats. Stroke 6:432–434

    Article  PubMed  CAS  Google Scholar 

  85. Huang NC, Wei J, Quast MJ (1996) A comparison of the early development of ischemic brain damage in normoglycemic and hyperglycemic rats using magnetic resonance imaging. Exp Brain Res 109:33–42

    Article  PubMed  CAS  Google Scholar 

  86. Kamada H, Yu F, Nito C, Chan PH (2007) Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke 38:1044–1049

    Article  PubMed  CAS  Google Scholar 

  87. Panes J, Kurose I, Rodriguez-Vaca D, Anderson DC, Miyasaka M, Tso P, Granger DN (1996) Diabetes exacerbates inflammatory responses to ischemia-reperfusion. Circulation 93:161–167

    Article  PubMed  CAS  Google Scholar 

  88. Kittaka M, Wang L, Sun N, Schreiber SS, Seeds NW, Fisher M, Zlokovic BV (1996) Brain capillary tissue plasminogen activator in a diabetes stroke model. Stroke 27:712–719

    Article  PubMed  CAS  Google Scholar 

  89. Els T, Klisch J, Orszagh M, Hetzel A, Schulte-Monting J, Schumacher M, Lucking CH (2002) Hyperglycemia in patients with focal cerebral ischemia after intravenous thrombolysis: influence on clinical outcome and infarct size. Cerebrovasc Dis 13:89–94

    Article  PubMed  CAS  Google Scholar 

  90. Toung TK, Hurn PD, Traystman RJ, Sieber FE (2000) Estrogen decreases infarct size after temporary focal ischemia in a genetic model of type 1 diabetes mellitus. Stroke 31:2701–2706

    Article  PubMed  CAS  Google Scholar 

  91. Vannucci SJ, Willing LB, Goto S, Alkayed NJ, Brucklacher RM, Wood TL, Towfighi J, Hurn PD, Simpson IA (2001) Experimental stroke in the female diabetic, db/db, mouse. J Cereb Blood Flow Metab 21:52–60

    Article  PubMed  CAS  Google Scholar 

  92. Moreira T, Cebers G, Pickering C, Ostenson CG, Efendic S, Liljequist S (2007) Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Neuroscience 144:1169–1185

    Article  PubMed  CAS  Google Scholar 

  93. Hamilton MG, Tranmer BI, Auer RN (1995) Insulin reduction of cerebral infarction due to transient focal ischemia. J Neurosurg 82:262–268

    Article  PubMed  CAS  Google Scholar 

  94. Bomont L, MacKenzie ET (1995) Neuroprotection after focal cerebral ischaemia in hyperglycaemic and diabetic rats. Neurosci Lett 197:53–56

    Article  PubMed  CAS  Google Scholar 

  95. Meden P, Andersen M, Overgaard K, Rasmussen RS, Boysen G (2002) The effects of early insulin treatment combined with thrombolysis in rat embolic stroke. Neurol Res 24:399–404

    Article  PubMed  CAS  Google Scholar 

  96. Wilson PW, Bozeman SR, Burton TM, Hoaglin DC, Ben-Joseph R, Pashos CL (2008) Prediction of first events of coronary heart disease and stroke with consideration of adiposity. Circulation 118:124–130

    Article  PubMed  Google Scholar 

  97. Rexrode KM, Hennekens CH, Willett WC, Colditz GA, Stampfer MJ, Rich-Edwards JW, Speizer FE, Manson JE (1997) A prospective study of body mass index, weight change, and risk of stroke in women. JAMA 277:1539–1545

    Article  PubMed  CAS  Google Scholar 

  98. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67:968–977

    Article  PubMed  CAS  Google Scholar 

  99. Kurth T, Gaziano JM, Berger K, Kase CS, Rexrode KM, Cook NR, Buring JE, Manson JE (2002) Body mass index and the risk of stroke in men. Arch Intern Med 162: 2557–2562

    Article  PubMed  Google Scholar 

  100. Mathew B, Francis L, Kayalar A, Cone J (2008) Obesity: effects on cardiovascular disease and its diagnosis. J Am Board Fam Med 21:562–568

    Article  PubMed  Google Scholar 

  101. Khaw KT, Barrett-Connor E, Suarez L, Criqui MH (1984) Predictors of stroke-associated mortality in the elderly. Stroke 15:244–248

    Article  PubMed  CAS  Google Scholar 

  102. Lu M, Ye W, Adami HO, Weiderpass E (2006) Prospective study of body size and risk for stroke amongst women below age 60. J Intern Med 260:442–450

    Article  PubMed  CAS  Google Scholar 

  103. Winter Y, Rohrmann S, Linseisen J, Lanczik O, Ringleb PA, Hebebrand J, Back T (2008) Contribution of obesity and abdominal fat mass to risk of stroke and transient ischemic attacks. Stroke 39:3145–3151

    Article  PubMed  Google Scholar 

  104. Hu G, Tuomilehto J, Silventoinen K, Sarti C, Mannisto S, Jousilahti P (2007) Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch Intern Med 167: 1420–1427

    Article  PubMed  Google Scholar 

  105. Suk SH, Sacco RL, Boden-Albala B, Cheun JF, Pittman JG, Elkind MS, Paik MC (2003) Abdominal obesity and risk of ischemic stroke: the Northern Manhattan Stroke Study. Stroke 34:1586–1592

    Article  PubMed  Google Scholar 

  106. Speakman J, Hambly C, Mitchell S, Krol E (2007) Animal models of obesity. Obes Rev 8(suppl 1):55–61

    Article  PubMed  Google Scholar 

  107. Russell JC, Proctor SD (2006) Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 15:318–330

    Article  PubMed  CAS  Google Scholar 

  108. Mayer J, Russell RE, Bates MW, Dickie MM (1953) Metabolic, nutritional and endocrine studies of the hereditary obesity–diabetes syndrome of mice and mechanism of its development. Metabolism 2:9–21

    PubMed  CAS  Google Scholar 

  109. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  110. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  PubMed  CAS  Google Scholar 

  111. Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    Article  PubMed  CAS  Google Scholar 

  112. Zucker LM, Antoniades HN (1972) Insulin and obesity in the Zucker genetically obese rat “fatty”. Endocrinology 90:1320–1330

    Article  PubMed  CAS  Google Scholar 

  113. Richardson M, Schmidt AM, Graham SE, Achen B, DeReske M, Russell JC (1998) Vasculopathy and insulin resistance in the JCR:LA-cp rat. Atherosclerosis 138:135–146

    Article  PubMed  CAS  Google Scholar 

  114. Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133:1081–1087

    PubMed  CAS  Google Scholar 

  115. Gallou-Kabani C, Vige A, Gross MS, Rabes JP, Boileau C, Larue-Achagiotis C, Tome D, Jais JP, Junien C (2007) C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity (Silver Spring) 15:1996–2005

    Article  CAS  Google Scholar 

  116. Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(suppl 3):S215–S219

    Article  PubMed  Google Scholar 

  117. Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, Kuhn CM, Rebuffe-Scrive M (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44:645–651

    Article  PubMed  CAS  Google Scholar 

  118. Lago F, Dieguez C, Gomez-Reino J, Gualillo O (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev 18:313–325

    Article  PubMed  CAS  Google Scholar 

  119. Nagai N, Van Hoef B, Lijnen HR (2007) Plasminogen activator inhibitor-1 contributes to the deleterious effect of obesity on the outcome of thrombotic ischemic stroke in mice. J Thromb Haemost 5:1726–1731

    Article  PubMed  CAS  Google Scholar 

  120. Osmond JM, Mintz JD, Dalton B, Stepp DW (2009) Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension 53:381–386

    Article  PubMed  CAS  Google Scholar 

  121. Terao S, Yilmaz G, Stokes KY, Ishikawa M, Kawase T, Granger DN (2008) Inflammatory and injury responses to ischemic stroke in obese mice. Stroke 39:943–950

    Article  PubMed  Google Scholar 

  122. Mayanagi K, Katakam PV, Gaspar T, Domoki F, Busija DW (2008) Acute treatment with rosuvastatin protects insulin resistant (C57BL/6J ob/ob) mice against transient cerebral ischemia. J Cereb Blood Flow Metab 28:1927–1935

    Article  PubMed  CAS  Google Scholar 

  123. Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P (2003) Stroke. Lancet 362:1211–1224

    Article  PubMed  Google Scholar 

  124. Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55:503–517

    PubMed  CAS  Google Scholar 

  125. Getz GS, Reardon CA (2006) Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 26:242–249

    Article  PubMed  CAS  Google Scholar 

  126. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  PubMed  CAS  Google Scholar 

  127. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  PubMed  CAS  Google Scholar 

  128. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  PubMed  CAS  Google Scholar 

  129. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    Article  PubMed  CAS  Google Scholar 

  130. Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29:431–438

    Article  PubMed  CAS  Google Scholar 

  131. Horsburgh K, McCarron MO, White F, Nicoll JA (2000) The role of apolipoprotein E in Alzheimer’s disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. Neurobiol Aging 21: 245–255

    Article  PubMed  CAS  Google Scholar 

  132. Laskowitz DT, Vitek MP (2007) Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics 8:959–969

    Article  PubMed  CAS  Google Scholar 

  133. Herz J (2001) Lipoprotein receptors: beacons to neurons? Trends Neurosci 24:193–195

    Article  PubMed  CAS  Google Scholar 

  134. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    Article  PubMed  CAS  Google Scholar 

  135. Cullen KM, Kocsi Z, Stone J (2006) Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 27: 1786–1796

    Article  PubMed  CAS  Google Scholar 

  136. Lynch CD, Cooney PT, Bennett SA, Thornton PL, Khan AS, Ingram RL, Sonntag WE (1999) Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats. Neurobiol Aging 20:191–200

    Article  PubMed  CAS  Google Scholar 

  137. Alba C, Vidal L, Diaz F, Villena A, de Vargas IP (2004) Ultrastructural and quantitative age-related changes in capillaries of the dorsal lateral geniculate nucleus. Brain Res Bull 64:145–153

    Article  PubMed  CAS  Google Scholar 

  138. Wang RY, Wang PS, Yang YR (2003) Effect of age in rats following middle cerebral artery occlusion. Gerontology 49:27–32

    Article  PubMed  Google Scholar 

  139. DiNapoli VA, Huber JD, Houser K, Li X, Rosen CL (2008) Early disruptions of the blood–brain barrier may contribute to exacerbated neuronal damage and prolonged functional recovery following stroke in aged rats. Neurobiol Aging 29:753–764

    Article  PubMed  CAS  Google Scholar 

  140. Ingraham JP, Forbes ME, Riddle DR, Sonntag WE (2008) Aging reduces hypoxia-induced microvascular growth in the rodent hippocampus. J Gerontol A Biol Sci Med Sci 63:12–20

    Article  PubMed  Google Scholar 

  141. Darsalia V, Heldmann U, Lindvall O, Kokaia Z (2005) Stroke-induced neurogenesis in aged brain. Stroke 36:1790–1795

    Article  PubMed  Google Scholar 

  142. Takaba H, Fukuda K, Yao H (2004) Substrain differences, gender, and age of spontaneously hypertensive rats critically determine infarct size produced by distal middle cerebral artery occlusion. Cell Mol Neurobiol 24:589–598

    Article  PubMed  Google Scholar 

  143. Yao H, Sadoshima S, Ooboshi H, Sato Y, Uchimura H, Fujishima M (1991) Age-related vulnerability to cerebral ischemia in spontaneously hypertensive rats. Stroke 22:1414–1418

    Article  PubMed  CAS  Google Scholar 

  144. Liu F, Yuan R, Benashski SE, McCullough LD (2009) Changes in experimental stroke outcome across the life span. J Cereb Blood Flow Metab 29:792–802

    Article  PubMed  CAS  Google Scholar 

  145. Murphy S, Gibson CL (2007) Nitric oxide, ischaemia and brain inflammation. Biochem Soc Trans 35:1133–1137

    Article  PubMed  CAS  Google Scholar 

  146. Feuerstein GZ, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 6:341–360

    PubMed  CAS  Google Scholar 

  147. Liu L, Wang Z, Wang X, Song L, Chen H, Bemeur C, Ste-Marie L, Montgomery J (2007) Comparison of two rat models of cerebral ischemia under hyperglycemic conditions. Microsurgery 27:258–262

    Article  PubMed  Google Scholar 

  148. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  PubMed  CAS  Google Scholar 

  149. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21:5528–5534

    PubMed  CAS  Google Scholar 

  150. Nawashiro H, Martin D, Hallenbeck JM (1997) Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab 17:229–232

    Article  PubMed  CAS  Google Scholar 

  151. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C (2002) Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 22:308–317

    Article  PubMed  CAS  Google Scholar 

  152. Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, Fairchild-Huntress V, Fang Q, Dunmore JH, Huszar D, Pan Y (2002) Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 125:59–65

    Article  PubMed  CAS  Google Scholar 

  153. Villa P, Triulzi S, Cavalieri B, Di Bitondo R, Bertini R, Barbera S, Bigini P, Mennini T, Gelosa P, Tremoli E, Sironi L, Ghezzi P (2007) The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med 13:125–133

    Article  PubMed  CAS  Google Scholar 

  154. Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721

    Article  PubMed  CAS  Google Scholar 

  155. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  PubMed  CAS  Google Scholar 

  156. Tang PC, Qin L, Zielonka J, Zhou J, Matte-Martone C, Bergaya S, van Rooijen N, Shlomchik WD, Min W, Sessa WC, Pober JS, Tellides G (2008) MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries. J Exp Med 205:3159–3171

    Article  PubMed  CAS  Google Scholar 

  157. Stabile E, Kinnaird T, la Sala A, Hanson SK, Watkins C, Campia U, Shou M, Zbinden S, Fuchs S, Kornfeld H, Epstein SE, Burnett MS (2006) CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation 113:118–124

    Article  PubMed  Google Scholar 

  158. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030

    Article  PubMed  CAS  Google Scholar 

  159. Copin JC, Goodyear MC, Gidday JM, Shah AR, Gascon E, Dayer A, Morel DM, Gasche Y (2005) Role of matrix metalloproteinases in apoptosis after transient focal cerebral ischemia in rats and mice. Eur J NeuroSci 22:1597–1608

    Article  PubMed  Google Scholar 

  160. Grossetete M, Rosenberg GA (2008) Matrix metalloproteinase inhibition facilitates cell death in intracerebral hemorrhage in mouse. J Cereb Blood Flow Metab 28:752–763

    Article  PubMed  CAS  Google Scholar 

  161. Kang SS, Kook JH, Hwang S, Park SH, Nam SC, Kim JK (2008) Inhibition of matrix metalloproteinase-9 attenuated neural progenitor cell migration after photothrombotic ischemia. Brain Res 1228:20–26

    Article  PubMed  CAS  Google Scholar 

  162. Boltze J, Forschler A, Nitzsche B, Waldmin D, Hoffmann A, Boltze CM, Dreyer AY, Goldammer A, Reischauer A, Hartig W, Geiger KD, Barthel H, Emmrich F, Gille U (2008) Permanent middle cerebral artery occlusion in sheep: a novel large animal model of focal cerebral ischemia. J Cereb Blood Flow Metab 28:1951–1964

    Article  PubMed  Google Scholar 

  163. Imai H, Konno K, Nakamura M, Shimizu T, Kubota C, Seki K, Honda F, Tomizawa S, Tanaka Y, Hata H, Saito N (2006) A new model of focal cerebral ischemia in the miniature pig. J Neurosurg 104:123–132

    PubMed  Google Scholar 

  164. Emsley HC, Hopkins SJ (2008) Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurol 7:341–353

    Article  PubMed  Google Scholar 

  165. Paganini-Hill A, Lozano E, Fischberg G, Perez Barreto M, Rajamani K, Ameriso SF, Heseltine PN, Fisher M (2003) Infection and risk of ischemic stroke: differences among stroke subtypes. Stroke 34:452–457

    Article  PubMed  CAS  Google Scholar 

  166. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, Vallance P (2004) Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 351:2611–2618

    Article  PubMed  CAS  Google Scholar 

  167. Emsley HC, Smith CJ, Gavin CM, Georgiou RF, Vail A, Barberan EM, Hallenbeck JM, del Zoppo GJ, Rothwell NJ, Tyrrell PJ, Hopkins SJ (2003) An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J Neuroimmunol 139:93–101

    Article  PubMed  CAS  Google Scholar 

  168. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26:654–665

    Article  PubMed  CAS  Google Scholar 

  169. Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15:941–947

    Article  PubMed  CAS  Google Scholar 

  170. McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27: 4403–4412

    Article  PubMed  CAS  Google Scholar 

  171. McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28:9451–9462

    Article  PubMed  CAS  Google Scholar 

  172. Emsley HC, Smith CJ, Gavin CM, Georgiou RF, Vail A, Barberan EM, Illingworth K, Scarth S, Wickramasinghe V, Hoadley ME, Rothwell NJ, Tyrrell PJ, Hopkins SJ (2007) Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production. BMC Neurol 7:5

    Article  PubMed  CAS  Google Scholar 

  173. Vogelgesang A, Grunwald U, Langner S, Jack R, Broker BM, Kessler C, Dressel A (2008) Analysis of lymphocyte subsets in patients with stroke and their influence on infection after stroke. Stroke 39:237–241

    Article  PubMed  Google Scholar 

  174. Woiciechowsky C, Schoning B, Lanksch WR, Volk HD, Docke WD (1999) Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med 77:769–780

    Article  PubMed  CAS  Google Scholar 

  175. Hilker R, Poetter C, Findeisen N, Sobesky J, Jacobs A, Neveling M, Heiss WD (2003) Nosocomial pneumonia after acute stroke: implications for neurological intensive care medicine. Stroke 34:975–981

    Article  PubMed  Google Scholar 

  176. Katzan IL, Cebul RD, Husak SH, Dawson NV, Baker DW (2003) The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology 60: 620–625

    Article  PubMed  CAS  Google Scholar 

  177. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736

    Article  PubMed  CAS  Google Scholar 

  178. Meisel C, Prass K, Braun J, Victorov I, Wolf T, Megow D, Halle E, Volk HD, Dirnagl U, Meisel A (2004) Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke 35:2–6

    Article  PubMed  CAS  Google Scholar 

  179. Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227: 75–86

    Article  PubMed  CAS  Google Scholar 

  180. Sriskandan S, Altmann DM (2008) The immunology of sepsis. J Pathol 214:211–223

    Article  PubMed  CAS  Google Scholar 

  181. Delbridge LM, O’Riordan MX (2007) Innate recognition of intracellular bacteria. Curr Opin Immunol 19:10–16

    Article  PubMed  CAS  Google Scholar 

  182. Asea A (2008) Heat shock proteins and ­toll-like receptors. Handb Exp Pharmacol: 111–127

    Google Scholar 

  183. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32:4–16

    Article  PubMed  CAS  Google Scholar 

  184. Pineau I, Lacroix S (2009) Endogenous signals initiating inflammation in the injured nervous system. Glia 57:351–361

    Article  PubMed  Google Scholar 

  185. Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM (2008) TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 31:33–40

    Article  PubMed  CAS  Google Scholar 

  186. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190:28–33

    Article  PubMed  CAS  Google Scholar 

  187. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158:1007–1020

    Article  PubMed  CAS  Google Scholar 

  188. Kariko K, Weissman D, Welsh FA (2004) Inhibition of toll-like receptor and cytokine signaling – a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 24:1288–1304

    Article  PubMed  CAS  Google Scholar 

  189. Malavazos AE, Corsi MM, Ermetici F, Coman C, Sardanelli F, Rossi A, Morricone L, Ambrosi B (2007) Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition. Nutr Metab Cardiovasc Dis 17:294–302

    Article  PubMed  CAS  Google Scholar 

  190. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17:4–12

    PubMed  CAS  Google Scholar 

  191. Darvall KA, Sam RC, Silverman SH, Bradbury AW, Adam DJ (2007) Obesity and thrombosis. Eur J Vasc Endovasc Surg 33:223–233

    Article  PubMed  CAS  Google Scholar 

  192. De Pergola G, De Mitrio V, Giorgino F, Sciaraffia M, Minenna A, Di Bari L, Pannacciulli N, Giorgino R (1997) Increase in both pro-thrombotic and anti-thrombotic factors in obese premenopausal women: relationship with body fat distribution. Int J Obes Relat Metab Disord 21:527–535

    Article  PubMed  Google Scholar 

  193. De Pergola G, Pannacciulli N (2002) Coagulation and fibrinolysis abnormalities in obesity. J Endocrinol Invest 25:899–904

    PubMed  Google Scholar 

  194. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581

    Article  PubMed  CAS  Google Scholar 

  195. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Medical Research Council, the Biotechnology and Biological Research Council, the European Union through the ARISE consortium, and the Australian National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

McColl, B., Howells, D., Rothwell, N., Denes, A. (2010). Modeling Risk Factors and Confounding Effects in Stroke. In: Dirnagl, U. (eds) Rodent Models of Stroke. Neuromethods, vol 47. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-750-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-750-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-749-5

  • Online ISBN: 978-1-60761-750-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics