Skip to main content

Non-invasive Optical Imaging in Small Animal Models of Stroke

  • Protocol
  • First Online:
Rodent Models of Stroke

Part of the book series: Neuromethods ((NM,volume 47))

Abstract

Non-invasive imaging technologies play a substantial role in the evaluation of physiological and pathophysiological processes. They are indispensable in biomedical research and in the clinic. In the past decade, designated small animal imaging scanners have become available for almost all imaging modalities used in clinical routine. These include nuclear imaging techniques such as positron emission tomography (PET) or single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), X-ray computed tomography (CT), and ultrasound (US). Among the imaging modalities used for small animal imaging, optical techniques such as fluorescence imaging (FI) and biolumnescence imaging (BLI) are becoming increasingly important. In this chapter, we describe the basic principles of optical imaging and the application of the techniques for the non-invasive visualization of biological processes in animal disease models, with special emphasis on small animal models of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lecchi M, Ottobrini L, Martelli C, Del Sole A, Lucignani G (2007) Instrumentation and probes for molecular and cellular imaging. Q J Nucl Med Mol Imaging 51:111–126

    PubMed  CAS  Google Scholar 

  2. Ntziachristos V, Leroy-Willig A, Tavitian B (eds) (2007) Textbook of in vivo imaging in vertebrates. Wiley, New York

    Google Scholar 

  3. Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38:209–222

    Article  PubMed  Google Scholar 

  4. Driehuys B, Nouls J, Badea A, Bucholz E, Ghaghada K, Petiet A, Hedlund LW (2008) Small animal imaging with magnetic resonance microscopy. ILAR J 49:35–53

    Article  PubMed  CAS  Google Scholar 

  5. Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53:R319–R350

    Article  PubMed  CAS  Google Scholar 

  6. Hauff P, Reinhardt M, Foster S (2008) Ultrasound basics. Handb Exp Pharmacol 185(Pt 1):91–107

    Article  PubMed  CAS  Google Scholar 

  7. Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49:1651–1663

    Article  PubMed  Google Scholar 

  8. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  9. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Article  PubMed  CAS  Google Scholar 

  10. Zinn KR, Chaudhuri TR, Szafran AA, O’Quinn D, Weaver C, Dugger K, Lamar D, Kesterson RA, Wang X, Frank SJ (2008) Non-invasive bioluminescence imaging in small animals. ILAR J 49:103–115

    Article  PubMed  CAS  Google Scholar 

  11. Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7:54–67

    Article  PubMed  CAS  Google Scholar 

  12. O’Malley D (2008) Chapter 5: imaging in depth: controversies and opportunities. Methods Cell Biol 89:95–128

    Article  PubMed  Google Scholar 

  13. Kaijzel EL, van der Pluijm G, Löwik CW (2007) Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 13:3490–3497

    Article  PubMed  Google Scholar 

  14. Wunder A, Straub RH, Gay S, Funk J, Müller-Ladner U (2005) Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology 44:1341–1349

    Article  PubMed  CAS  Google Scholar 

  15. Klohs J, Gräfe M, Graf K, Steinbrink J, Dietrich T, Stibenz D, Bahmani P, Kronenberg G, Harms C, Endres M, Lindauer U, Greger K, Stelzer EHK, Dirnagl U, Wunder A (2008) In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody. Stroke 39:2845–2852

    Article  PubMed  CAS  Google Scholar 

  16. Klohs J, Steinbrink J, Bourayou R, Mueller S, Cordell R, Licha K, Schirner M, Dirnagl U, Lindauer U, Wunder A (2009) Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice. J Neurosci Meth 180(1):126–132

    Article  CAS  Google Scholar 

  17. Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957

    Article  PubMed  Google Scholar 

  18. Cordeau P, Lalancette-Hébert M, Weng YC, Kriz J (2008) Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke 39:935–942

    Article  PubMed  CAS  Google Scholar 

  19. Lalancette-Hébert M, Phaneuf D, Soucy G, Weng YC, Kriz J (2009) Live imaging of Toll-like receptor 2 response in cerebral ischemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain 132(4):940–954

    Article  PubMed  Google Scholar 

  20. Klohs J, Steinbrink J, Nierhaus T, Bourayou R, Lindauer U, Bahmani P, Dirnagl U, Wunder A (2006) Non invasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study. Mol Imaging 5:180–187

    PubMed  Google Scholar 

  21. Bourayou R, Boeth H, Benav H, Betz T, Lindauer U, Nierhaus T, Klohs J, Wunder A, Dirnagl U, Steinbrink J (2008) Fluorescence tomography technique optimized for non-invasive imaging of the mouse brain. J Biomed Opt 13:041311

    Article  PubMed  Google Scholar 

  22. Waerzeggers Y, Klein M, Miletic H, Himmelreich U, Li H, Monfared P, Herrlinger U, Hoehn M, Coenen HH, Weller M, Winkeler A, Jacobs AH (2008) Multimodal imaging of neuronal progenitor cell fate in rodents. Mol Imaging 7:77–91

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Ulrich Dirnagl, Center for Stroke Research (CSB), Department of Experimental Neurology, Charité – University Medicine Berlin, Germany for critical review of the manuscript, the valuable discussions about stroke imaging, and his continuous support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Wunder, A., Klohs, J. (2010). Non-invasive Optical Imaging in Small Animal Models of Stroke. In: Dirnagl, U. (eds) Rodent Models of Stroke. Neuromethods, vol 47. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-750-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-750-1_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-749-5

  • Online ISBN: 978-1-60761-750-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics